Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Am J Prev Med ; 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38705542

RESUMEN

INTRODUCTION: Dementia risk is substantially elevated in patients with diabetes. However, evidence on dementia risk associated with various antidiabetic regimens is still limited. This study aims to comprehensively investigate the risk of dementia and Alzheimer's disease (AD) associated with various antidiabetic classes. METHODS: Cochrane Central Register of Controlled Trials, Embase, MEDLINE (PubMed), and Scopus were searched from inception to March 2024 (PROSPERO CRD 42022365927). Observational studies investigating dementia and AD incidences after antidiabetic initiation were identified. Bayesian network meta-analysis was performed to determine dementia and AD risks associated with antidiabetics. Preferred Reporting Items for Systematic Reviews-Network Meta-Analyses (PRISMA-NMA) guidelines were followed. Statistical analysis was performed and updated in November 2023 and March 2024, respectively. RESULTS: A total of 1,565,245 patients from 16 studies were included. Dementia and AD risks were significantly lower with metformin and sodium glucose co-transporter-2 inhibitors (SGLT2i). Metformin displayed the lowest risk of dementia across diverse antidiabetics, whereas α-glucosidase inhibitors demonstrated the highest risk. SGLT2i exhibited the lowest dementia risk across second-line antidiabetics. Dementia risk was significantly higher with dipeptidyl peptidase-4 inhibitor (DPP4i), metformin, sulfonylureas, and thiazolidinediones (TZD) compared to SGLT2i in the elderly (≥75 years). Dementia risk associated with metformin was substantially lower, regardless of diabetic complication status or baseline A1C. DISCUSSION: Metformin and SGLT2i demonstrated lower dementia risk than other antidiabetic classes. Patient-specific factors may affect this relationship and cautious interpretation is warranted as metformin is typically initiated at an earlier stage with fewer complications. Hence, further large-scaled clinical trials are required.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38768569

RESUMEN

INTRODUCTION: Diesel particulate matter (DPM) emitted from diesel engines is a major source of air pollutants. DPM is composed of elemental carbon, which adsorbs organic compounds including toxic polycyclic aromatic hydrocarbons (PAH). The skin, as well as airways, are directly exposed to DPM, and association of atopic dermatitis, psoriasis flares, and premature skin aging with air pollutant levels has been documented. In skin, the permeation of DPM and DPM-adsorbed compounds is primarily blocked by the epidermal permeability barrier deployed in the stratum corneum. Depending upon the integrity of this barrier, certain amounts of DPM and DPM-adsorbed compounds can permeate into the skin. However, this permeation into human skin has not been completely elucidated. METHODS: We assessed the permeation of PAHs (adsorbed to DPM) into skin using ex vivo normal (barrier-competent) organ-cultured human skin after application of DPM. Two major PAHs, 2-methylnaphthalene and triphenylene, and a carcinogenic polycyclic aromatic hydrocarbon (PAH), benzo(a)pyrene, all found in DPM, were measured in the epidermis and dermis using liquid chromatography electrospray ionization tandem mass spectrometry. In addition, we investigated whether a topical formulation can attenuate the permeation of DPM into skin. RESULTS: 2-methylnaphthalene, triphenylene and benzo(a)pyrene were recovered from the epidermis. Although these PAH were also detected in the dermis after DPM application, these PAH levels were significantly lower than those found in the epidermis. We also demonstrated that a topical formulation that has the ability to form more uniform membrane structures can significantly suppress the permeation of PAH adsorbed to DPMs into the skin. CONCLUSION: Toxic compounds adsorbed by DPM can permeate even barrier-competent skin. Hence, barrier-compromised skin, such as in atopic dermatitis, psoriasis and xerosis, is even more vulnerable to air pollutants. A properly formulated topical mixture that forms certain membrane structures on the skin surface can effectively prevent permeation of exogenous substances, including DPM, into skin.

3.
Adv Sci (Weinh) ; : e2401022, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38666392

RESUMEN

Although sodium-ion batteries (SIBs) offer promising low-cost alternatives to lithium-ion batteries (LIBs), several challenges need to be overcome for their widespread adoption. A primary concern is the optimization of carbon anodes. Graphite, vital to the commercial viability of LIBs, has a limited capacity for sodium ions. Numerous alternatives to graphite are explored, particularly focusing on disordered carbons, including hard carbon. However, compared with graphite, most of these materials underperform in LIBs. Furthermore, the reaction mechanism between carbon and sodium ions remains ambiguous owing to the structural diversity of disordered carbon. A straightforward mechanical approach is introduced to enhance the sodium ion storage capacity of graphite, supported by comprehensive analytical techniques. Mechanically activated graphite delivers a notable reversible capacity of 290.5 mAh·g-1 at a current density of 10 mA·g-1. Moreover, it maintains a capacity of 157.7 mAh·g-1 even at a current density of 1 A·g-1, benefiting from the defect-rich structure achieved by mechanical activation. Soft X-ray analysis revealed that this defect-rich carbon employs a sodium-ion storage mechanism distinct from that of hard carbon. This leads to an unexpected reversible reaction on the solid electrolyte surface. These insights pave the way for innovative design approaches for carbon electrodes in SIB anodes.

4.
Adv Sci (Weinh) ; : e2307427, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38460177

RESUMEN

A medical tool is a general instrument intended for use in the prevention, diagnosis, and treatment of diseases in humans or other animals. Nowadays, sensors are widely employed in medical tools to analyze or quantify disease-related parameters for the diagnosis and monitoring of patients' diseases. Recent explosive advancements in sensor technologies have extended the integration and application of sensors in medical tools by providing more versatile in vivo sensing capabilities. These unique sensing capabilities, especially for medical tools for surgery or medical treatment, are getting more attention owing to the rapid growth of minimally invasive surgery. In this review, recent advancements in sensor-integrated medical tools are presented, and their necessity, use, and examples are comprehensively introduced. Specifically, medical tools often utilized for medical surgery or treatment, for example, medical needles, catheters, robotic surgery, sutures, endoscopes, and tubes, are covered, and in-depth discussions about the working mechanism used for each sensor-integrated medical tool are provided.

5.
J Invest Dermatol ; 144(4): 802-810.e5, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37952608

RESUMEN

Xerosis is a common sign of both type 1 and type 2 diabetes mellitus (DM), and patients with DM and mouse models for DM show a compromised epidermal permeability barrier. Barrier defects then allow the entry of foreign substances into the skin, triggering inflammation, infection, and worsening skin symptoms. Characterizing how barrier abnormalities develop in DM could suggest treatments for xerosis and other skin disease traits. Because the proper ratio, as well as proper bulk amounts, of heterogeneous ceramide species are keys to forming a competent barrier, we investigated how ceramide metabolism is affected in type 1 DM using a mouse model (induced by streptozotocin). Chronic inflammation, evident in the skin of mice with DM, leads to (i) decreased de novo ceramide production through serine racemase activation-mediated attenuation of serine palmitoyl transferase activity by D-serine; (ii) changes in ceramide synthase activities and expression that modify the ratio of ceramide molecular species; and (iii) increased ceramide-1-phosphate, a proinflammatory lipid mediator, that stimulates inflammatory cytokine expression (TNFα and IFN-γ). Together, chronic inflammation affects ceramide metabolism, which attenuates epidermal permeability barrier formation, and ceramide-1-phosphate could amplify this inflammation. Alleviation of chronic inflammation is a credible approach for normalizing barrier function and ameliorating diverse skin abnormalities in DM.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Humanos , Ceramidas , Inflamación/metabolismo , Serina , Fosfatos
6.
J Microbiol Biotechnol ; 34(2): 425-435, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-37997262

RESUMEN

Schisandra chinensis extract (SCE) protects against hypocholesterolemia by inhibiting proprotein convertase subtilisin/kexin 9 (PCSK9) protein stabilization. We hypothesized that the hypocholesterolemic activity of SCE can be attributable to upregulation of the PCSK9 inhibition-associated low-density lipoprotein receptor (LDLR). Male mice were fed a low-fat diet or a Western diet (WD) containing SCE at 1% for 12 weeks. WD increased final body weight and blood LDL cholesterol levels as well as alanine transaminase and aspartate aminotransferase expression. However, SCE supplementation significantly attenuated the increase in blood markers caused by WD. SCE also attenuated WD-mediated increases in hepatic LDLR protein expression in the obese mice. In addition, SCE increased LDLR protein expression and attenuated cellular PCSK9 levels in HepG2 cells supplemented with delipidated serum (DLPS). Non-toxic concentrations of schisandrin A (SA), one of the active components of SCE, significantly increased LDLR expression and tended to decrease PCSK9 protein levels in DLPS-treated HepG2 cells. High levels of SA-mediated PCSK9 attenuation was not attributable to reduced PCSK9 gene expression, but was associated with free PCSK9 protein degradation in this cell model. Our findings show that PCSK9 secretion can be significantly reduced by SA treatment, contributing to reductions in free cholesterol levels.


Asunto(s)
Ciclooctanos , Hígado Graso , Lignanos , Compuestos Policíclicos , Schisandra , Masculino , Ratones , Animales , Humanos , Proproteína Convertasa 9/genética , Proproteína Convertasa 9/metabolismo , Schisandra/metabolismo , Serina Endopeptidasas/genética , Subtilisina , Proproteína Convertasas/genética , Proproteína Convertasas/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo , Células Hep G2
7.
Genes (Basel) ; 14(12)2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38137029

RESUMEN

Diabetes is characterized by persistently high blood glucose levels and severe complications and affects millions of people worldwide. In this study, we explored the epigenetic landscape of diabetes using data from the Korean Genome and Epidemiology Study (KoGES), specifically the Ansung-Ansan (AS-AS) cohort. Using epigenome-wide association studies, we investigated DNA methylation patterns in patients with type 2 diabetes mellitus (T2DM) and those with normal glucose regulation. Differential methylation analysis revealed 106 differentially methylated probes (DMPs), with the 10 top DMPs prominently associated with TXNIP, PDK4, NBPF20, ARRDC4, UFM1, PFKFB2, C7orf50, and ABCG1, indicating significant changes in methylation. Correlation analysis highlighted the association between the leading DMPs (e.g., cg19693031 and cg26974062 for TXNIP and cg26823705 for NBPF20) and key glycemic markers (fasting plasma glucose and hemoglobin A1c), confirming their relevance in T2DM. Moreover, we identified 62 significantly differentially methylated regions (DMRs) spanning 61 genes. A DMR associated with PDE1C showed hypermethylation, whereas DMRs associated with DIP2C, FLJ90757, PRSS50, and TDRD9 showed hypomethylation. PDE1C and TDRD9 showed a strong positive correlation between the CpG sites included in each DMR, which have previously been implicated in T2DM-related processes. This study contributes to the understanding of epigenetic modifications in T2DM. These valuable insights can be utilized in identifying potential biomarkers and therapeutic targets for effective management and prevention of diabetes.


Asunto(s)
Metilación de ADN , Diabetes Mellitus Tipo 2 , Humanos , Metilación de ADN/genética , Epigenoma , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/genética , Estudio de Asociación del Genoma Completo , Epigénesis Genética/genética , República de Corea/epidemiología , Fosfofructoquinasa-2/genética
8.
ACS Nano ; 17(21): 21443-21454, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37857269

RESUMEN

Photolithography is a well-established fabrication method for realizing multilayer electronic circuits. However, it is challenging to adopt photolithography to fabricate intrinsically stretchable multilayer electronic circuits fully composed of an elastomeric matrix, due to the opacity of thick stretchable nanocomposite conductors. Here, we present photothermal lithography that can pattern elastomeric conductors and via holes using pulsed lasers. The photothermal-patterned stretchable nanocomposite conductor exhibits 3 times higher conductivity (5940 S cm-1) and 5 orders of magnitude lower resistance change (R/R0 = 40) under a 30% strained 5000th cyclic stretch, compared to those of a screen-printed conductor, based on the percolation network formed by spatial heating of the laser. In addition, a 50 µm sized stretchable via holes can be patterned on the passivation without material ablation and electrical degradation of the bottom conductor. By repeatedly patterning the conductor and via holes, highly conductive and durable multilayer circuits can be stacked with layer-by-layer material integration. Finally, a stretchable wireless pressure sensor and passive matrix LED array are demonstrated, thus showing the potential for a stretchable multilayer electronic circuit with durability, high density, and multifunctionality.

9.
bioRxiv ; 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37873341

RESUMEN

Bioelectronic fibers hold promise for both research and clinical applications due to their compactness, ease of implantation, and ability to incorporate various functionalities such as sensing and stimulation. However, existing devices suffer from bulkiness, rigidity, limited functionality, and low density of active components. These limitations stem from the difficulty to incorporate many components on one-dimensional (1D) fiber devices due to the incompatibility of conventional microfabrication methods (e.g., photolithography) with curved, thin and long fiber structures. Herein, we introduce a fabrication approach, ‶spiral transformation″, to convert two-dimensional (2D) films containing microfabricated devices into 1D soft fibers. This approach allows for the creation of high density multimodal soft bioelectronic fibers, termed Spiral NeuroString (S-NeuroString), while enabling precise control over the longitudinal, angular, and radial positioning and distribution of the functional components. We show the utility of S-NeuroString for motility mapping, serotonin sensing, and tissue stimulation within the dynamic and soft gastrointestinal (GI) system, as well as for single-unit recordings in the brain. The described bioelectronic fibers hold great promises for next-generation multifunctional implantable electronics.

10.
Antioxidants (Basel) ; 12(9)2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37760053

RESUMEN

Patulin (PAT) is a natural mycotoxin found in decaying pome fruits. Although some toxicological studies have been conducted on PAT, recent research has highlighted its anticancer and antifungal effects. However, studies have yet to examine the effects and molecular mechanisms of PAT in other metabolic diseases. Obesity is a chronic disease caused by excessive food intake and abnormal lifestyle, leading to low-grade inflammation. Therefore, this study aimed to elucidate the effect of PAT on obesity at the cellular level. PAT treatment reduced lipid accumulation, suppressed glucose and LDL uptake, inhibited lipid deposition and triglyceride synthesis, upregulated fatty acid oxidation-related genes (Pgc1α), and downregulated adipogenic/lipogenic genes (Pparγ and C/ebpα) in hypertrophied 3T3-L1 adipocytes. Additionally, PAT treatment enhanced mitochondrial respiration and mass in differentiated adipocytes and alleviated inflammatory response in activated RAW 264.7 macrophages. Moreover, PAT treatment downregulated pro-inflammatory genes (il-6, Tnf-α, Cox-2, and inos), suppressed lipopolysaccharide (LPS)-induced increase in inflammatory mediators (IL-6, TNF-α, and NO), and restored mitochondrial oxidative function in LPS-stimulated macrophages by improving oxygen consumption and mitochondrial integrity and suppressing ROS generation. Overall, these findings suggest a potential for PAT in the prevention of lipid accumulation and inflammation-related disorders.

11.
Bioact Mater ; 25: 796-806, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37056265

RESUMEN

During the past decade, there has been extensive research toward the possibility of exploring magnesium and its alloys as biocompatible and biodegradable materials for implantable applications. Its practical medical application, however, has been limited to specific areas owing to rapid corrosion in the initial stage and the consequent complications. Surface coatings can significantly reduce the initial corrosion of Mg alloys, and several studies have been carried out to improve the adhesion strength of the coating to the surfaces of the alloys. The composition of hydroxyapatite (HAp) is very similar to that of bone tissue; it is one of the most commonly used coating materials for bone-related implants owing to favorable osseointegration post-implantation. In this study, HAp was coated on Mg using nanosecond laser coating, combining the advantages of chemical and physical treatments. Photothermal heat generated in the liquid precursor by the laser improved the adhesion of the coating through the precipitation and growth of HAp at the localized nanosecond laser focal area and increased the corrosion resistance and cell adhesion of Mg. The physical, crystallographic, and chemical bondings were analyzed to explore the mechanism through which the surface adhesion between Mg and the HAp coating layer increased. The applicability of the coating to Mg screws used for clinical devices and improvement in its corrosion property were confirmed. The liquid environment-based laser surface coating technique offers a simple and quick process that does not require any chemical ligands, and therefore, overcomes a potential obstacle in its clinical use.

12.
ACS Nano ; 17(6): 5935-5942, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36916819

RESUMEN

The growing demand for nanophotonic devices has driven the advancement of nanotransfer printing (nTP) technology. Currently, the scope of nTP is limited to certain materials and substrates owing to the temperature, pressure, and chemical bonding requirements. In this study, we developed a universal nTP technique utilizing covalent bonding-based adhesives to improve the adhesion between the target material and substrate. Additionally, the technique employed plasma-based selective etching to weaken the adhesion between the mold and target material, thereby enabling the reliable modulation of the relative adhesion forces, regardless of the material or substrate. The technique was evaluated by printing four optical materials on nine substrates, including rigid, flexible, and stretchable substrates. Finally, its applicability was demonstrated by fabricating a ring hologram, a flexible plasmonic color filter, and extraordinary optical transmission-based strain sensors. The high accuracy and reliability of the proposed nTP method were verified by the performance of nanophotonic devices that closely matched numerical simulation results.

13.
Small ; 19(27): e2207165, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36974597

RESUMEN

Photoactivated gas sensors that are fully integrated with micro light-emitting diodes (µLED) have shown great potential to substitute conventional micro/nano-electromechanical (M/NEMS) gas sensors owing to their low power consumption, high mechanical stability, and mass-producibility. Previous photoactivated gas sensors mostly have utilized ultra-violet (UV) light (250-400 nm) for activating high-bandgap metal oxides, although energy conversion efficiencies of gallium nitride (GaN) LEDs are maximized in the blue range (430-470 nm). This study presents a more advanced monolithic photoactivated gas sensor based on a nanowatt-level, ultra-low-power blue (λpeak  = 435 nm) µLED platform (µLP). To promote the blue light absorbance of the sensing material, plasmonic silver (Ag) nanoparticles (NPs) are uniformly coated on porous indium oxide (In2 O3 ) thin films. By the plasmonic effect, Ag NPs absorb the blue light and spontaneously transfer excited hot electrons to the surface of In2 O3 . Consequently, high external quantum efficiency (EQE, ≈17.3%) and sensor response (ΔR/R0 (%) = 1319%) to 1 ppm NO2 gas can be achieved with a small power consumption of 63 nW. Therefore, it is highly expected to realize various practical applications of mobile gas sensors such as personal environmental monitoring devices, smart factories, farms, and home appliances.

14.
Skin Pharmacol Physiol ; 36(3): 149-159, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36927667

RESUMEN

INTRODUCTION: The outermost layer of the skin, the epidermis, is directly exposed to external stress (e.g., irradiation, allergens, and chemicals). Changes in epidermal conditions/environment in response to this stress could also influence conditions of the dermis, located directly beneath the epidermis. Yet, whether/how any epidermal environment changes in response to external stress affect dermal functions has not been completely clarified. METHODS: We employed ultraviolet irradiation B (UVB) (which hardly reaches the dermis) as a model of external stress. Human keratinocytes and human dermal fibroblasts were treated with UVB and conditioned medium of keratinocytes exposed to UVB (UVB-keratinocyte-M), respectively. We assessed (1) inflammatory cytokines and lipid mediators in keratinocytes; (2) matrix metalloprotease (MMP) levels and collagen degradation in fibroblasts; (3) ex vivo organ-cultured human skin was treated with UVB. MMP levels and collagen degradation were examined; (4) test whether the mixture of agent (agent cocktail) consisting of dihydroceramide, niacin amide, resveratrol, glucosyl hesperidin, and phytosterol ester that has been shown to improve skin barrier integrity can mitigate influence of UVB in skin; and (5) a pilot one-arm human clinical test to assess efficacy of formulation containing agent cocktail on stratum corneum hydration, skin elasticity, and wrinkle index. RESULTS: Inflammatory-cytokine and -lipid mediator production were increased in cultured keratinocytes treated with UVB, while matrix MMP-1, -3, and -9 production and collagen degradation were increased in fibroblasts incubated with UVB-keratinocyte-M. mRNA expression of COL1A1 (that codes type 1 collagen) levels was decreased in fibroblasts incubated with UVB-keratinocyte-M. The study using ex vivo organ-cultured human skin showed both MMP-1 and MMP-9 expression were increased in both epidermis and dermis and increased dermal collagen degradation following UVB irradiation. Increased MMP production and collagen degradation were attenuated by application of an agent cocktail. Finally, a pilot clinical study demonstrated that the formulation containing our agent cocktail likely has the ability to improve skin hydration, increase skin elasticity, and reduce the appearance of wrinkles. CONCLUSION: Epidermal changes in epidermal environment and conditions in response to external stress affect dermal conditions, and these negative effects of external stress on various skin layers can be pharmacologically mitigated.


Asunto(s)
Metaloproteinasa 1 de la Matriz , Envejecimiento de la Piel , Humanos , Metaloproteinasa 1 de la Matriz/genética , Metaloproteinasa 1 de la Matriz/metabolismo , Dermis/metabolismo , Epidermis/metabolismo , Colágeno Tipo I , Citocinas/metabolismo , Lípidos , Rayos Ultravioleta , Fibroblastos
15.
Nat Commun ; 14(1): 833, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36788240

RESUMEN

The growing demand for complex three-dimensional (3D) micro-/nanostructures has inspired the development of the corresponding manufacturing techniques. Among these techniques, 3D fabrication based on mechanically guided assembly offers the advantages of broad material compatibility, high designability, and structural reversibility under strain but is not applicable for nanoscale device printing because of the bottleneck at nanofabrication and design technique. Herein, a configuration-designable nanoscale 3D fabrication is suggested through a robust nanotransfer methodology and design of substrate's mechanical characteristics. Covalent bonding-based two-dimensional nanotransfer allowing for nanostructure printing on elastomer substrates is used to address fabrication problems, while the feasibility of configuration design through the modulation of substrate's mechanical characteristics is examined using analytical calculations and numerical simulations, allowing printing of various 3D nanostructures. The printed nanostructures exhibit strain-independent electrical properties and are therefore used to fabricate stretchable H2 and NO2 sensors with high performances stable under external strains of 30%.

16.
Exp Mol Med ; 55(1): 143-157, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36609599

RESUMEN

Dynamic alteration of DNA methylation leads to various human diseases, including nonalcoholic fatty liver disease (NAFLD). Although C-Maf-inducing protein (Cmip) has been reported to be associated with NAFLD, its exact underlying mechanism remains unclear. Here, we aimed to elucidate this mechanism in NAFLD in vitro and in vivo. We first identified alterations in the methylation status of the Cmip intron 1 region in mouse liver tissues with high-fat high-sucrose diet-induced NAFLD. Knockdown of DNA methyltransferase (Dnmt) 1 significantly increased Cmip expression. Chromatin immunoprecipitation assays of AML12 cells treated with oleic and palmitic acid (OPA) revealed that Dnmt1 was dissociated and that methylation of H3K27me3 was significantly decreased in the Cmip intron 1 region. Conversely, the knockdown of Tet methylcytosine dioxygenase 2 (Tet2) decreased Cmip expression. Following OPA treatment, the CCCTC-binding factor (Ctcf) was recruited, and H3K4me3 was significantly hypermethylated. Intravenous Cmip siRNA injection ameliorated NAFLD pathogenic features in ob/ob mice. Additionally, Pparγ and Cd36 expression levels were dramatically decreased in the livers of ob/ob mice administered siCmip, and RNA sequencing revealed that Gbp2 was involved. Gbp2 knockdown also induced a decrease in Pparγ and Cd36 expression, resulting in the abrogation of fatty acid uptake into cells. Our data demonstrate that Cmip and Gbp2 expression levels are enhanced in human liver tissues bearing NAFLD features. We also show that Dnmt1-Trt2/Ctcf-mediated reversible modulation of Cmip methylation regulates the Gbp2-Pparγ-Cd36 signaling pathway, indicating the potential of Cmip as a novel therapeutic target for NAFLD.


Asunto(s)
Dioxigenasas , Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Antígenos CD36/genética , Antígenos CD36/metabolismo , Dioxigenasas/genética , Dioxigenasas/metabolismo , Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al GTP/metabolismo , Hígado/metabolismo , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo
17.
Small Methods ; 7(3): e2201352, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36693793

RESUMEN

Toxic and flammable gases pose a major safety risk in industrial settings; thus, their portable sensing is desired, which requires sensors with fast response, low-power consumption, and accurate detection. Herein, a low-power, multi-transduction array is presented for the accurate sensing of flammable and toxic gases. Specifically, four different sensors are integrated on a micro-electro-mechanical-systems platform consisting of bridge-type microheaters. To produce distinct fingerprints for enhanced selectivity, the four sensors operate based on two different transduction mechanisms: chemiresistive and calorimetric sensing. Local, in situ synthesis routes are used to integrate nanostructured materials (ZnO, CuO, and Pt Black) for the sensors on the microheaters. The transient responses of the four sensors are fed to a convolutional neural network for real-time classification and regression of five different gases (H2 , NO2 , C2 H6 O, CO, and NH3 ). An overall classification accuracy of 97.95%, an average regression error of 14%, and a power consumption of 7 mW per device are obtained. The combination of a versatile low-power platform, local integration of nanomaterials, different transduction mechanisms, and a real-time machine learning strategy presented herein helps advance the constant need to simultaneously achieve fast, low-power, and selective gas sensing of flammable and toxic gases.

18.
Food Chem ; 400: 134038, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36067688

RESUMEN

Gellan gum (GG) is an anionic polysaccharide used as an additive in the food industry. However, the effect of GG on gut microbiota regulation and nonalcoholic fatty liver disease (NAFLD) has not yet been investigated. In vitro fermentation experiments have demonstrated that GG promoted the growth of probiotic strains such as Lactiplantibacillus rhamnosus and Bifidobacterium bifidum, producing metabolites beneficial to gut health. In mice, GG reduced hepatic triglyceride content, serum biomarkers, and body fat mass and weight gain induced by a high fat diet. Additionally, GG regulated the gut microbiota including Desulfovibrionales, Deferribacterales, Bacteroidales, and Lactobacillales at the order level and also promoted short-chain fatty acid production. Moreover, GG improved the expression of proteins related to hepatic inflammation and lipid metabolism. Taken together, GG ameliorated NAFLD, possibly by acting on the gut-liver axis via improving the gut health, indicating its potential as a food supplement and/or prebiotic against NAFLD.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Animales , Biomarcadores/metabolismo , Dieta Alta en Grasa/efectos adversos , Ácidos Grasos Volátiles/metabolismo , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/genética , Polisacáridos Bacterianos/farmacología , Triglicéridos/metabolismo
20.
Exp Ther Med ; 24(6): 754, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36545047

RESUMEN

Malignant melanoma is responsible for 3.0 and 1.7% of cases of tumor incidence and tumor-associated mortality, respectively, in the Caucasian population. Melanoma is a type of skin cancer that occurs when melanocytes mutate and divide uncontrollably. Nypa fruticans Wurmb (NF) is abundant in phytochemicals (polyphenols and flavonoids) and is traditionally used to treat diseases of the respiratory tract. The present study investigated the inhibitory effect of the ethyl acetate fraction of NF (ENF) on melanogenesis-related factors in isobutylmethylxanthine-treated B16F10 melanoma cells. Phenolics and flavonoids (caffeic acid, catechin, epicatechin and hirsutine) in ENF were analyzed via liquid chromatography-mass spectrometry. In addition, the main factors involved in melanogenesis were identified using immunoblotting, reverse transcription-polymerase chain reaction (RT-PCR), RT-quantitative PCR and immunofluorescence. ENF significantly suppressed the expression of tyrosinase (TYR) and TYR-related proteins 1 and 2 (TYRP-1/2), which are the main factors involved in melanogenesis. ENF also inhibited the expression of microphthalmia-associated transcription factor (MITF) by phosphorylating the related cell signaling proteins (protein kinase B, mammalian target of rapamycin, phosphoinositide 3-kinase and cAMP response element-binding protein). Furthermore, ENF inhibited the phosphorylation of extracellular signal-regulated kinase and thereby downregulated melanogenesis. In conclusion, ENF inhibited melanogenesis by suppressing MITF, which controls TYRP-1/2 and TYR. These results suggested that ENF may be a natural resource that can inhibit excessive melanin expression by regulating various melanogenesis pathways.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...