Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JCI Insight ; 5(21)2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-32990683

RESUMEN

With an expanding aging population burdened with comorbidities, there is considerable interest in treatments that optimize health in later life. Acarbose (ACA), a drug used clinically to treat type 2 diabetes mellitus (T2DM), can extend mouse life span with greater effect in males than in females. Using a genetically heterogeneous mouse model, we tested the ability of ACA to ameliorate functional, pathological, and biochemical changes that occur during aging, and we determined which of the effects of age and drug were sex dependent. In both sexes, ACA prevented age-dependent loss of body mass, in addition to improving balance/coordination on an accelerating rotarod, rotarod endurance, and grip strength test. Age-related cardiac hypertrophy was seen only in male mice, and this male-specific aging effect was attenuated by ACA. ACA-sensitive cardiac changes were associated with reduced activation of cardiac growth-promoting pathways and increased abundance of peroxisomal proteins involved in lipid metabolism. ACA further ameliorated age-associated changes in cardiac lipid species, particularly lysophospholipids - changes that have previously been associated with aging, cardiac dysfunction, and cardiovascular disease in humans. In the liver, ACA had pronounced effects on lipid handling in both sexes, reducing hepatic lipidosis during aging and shifting the liver lipidome in adulthood, particularly favoring reduced triglyceride (TAG) accumulation. Our results demonstrate that ACA, already in clinical use for T2DM, has broad-ranging antiaging effects in multiple tissues, and it may have the potential to increase physical function and alter lipid biology to preserve or improve health at older ages.


Asunto(s)
Acarbosa/farmacología , Envejecimiento/efectos de los fármacos , Cardiomegalia/tratamiento farmacológico , Corazón/efectos de los fármacos , Lipidosis/tratamiento farmacológico , Hepatopatías/tratamiento farmacológico , Condicionamiento Físico Animal , Factores de Edad , Animales , Femenino , Inhibidores de Glicósido Hidrolasas/farmacología , Lipidosis/metabolismo , Hepatopatías/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Factores Sexuales
2.
Int J Proteomics ; 2012: 123076, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22900174

RESUMEN

Towards developing a systems-level pathobiological understanding of Salmonella enterica, we performed a subcellular proteomic analysis of this pathogen grown under standard laboratory and phagosome-mimicking conditions in vitro. Analysis of proteins from cytoplasmic, inner membrane, periplasmic, and outer membrane fractions yielded coverage of 25% of the theoretical proteome. Confident subcellular location could be assigned to over 1000 proteins, with good agreement between experimentally observed location and predicted/known protein properties. Comparison of protein location under the different environmental conditions provided insight into dynamic protein localization and possible moonlighting (multiple function) activities. Notable examples of dynamic localization were the response regulators of two-component regulatory systems (e.g., ArcB and PhoQ). The DNA-binding protein Dps that is generally regarded as cytoplasmic was significantly enriched in the outer membrane for all growth conditions examined, suggestive of moonlighting activities. These observations imply the existence of unknown transport mechanisms and novel functions for a subset of Salmonella proteins. Overall, this work provides a catalog of experimentally verified subcellular protein locations for Salmonella and a framework for further investigations using computational modeling.

3.
Anal Chem ; 83(19): 7260-8, 2011 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-21740036

RESUMEN

The c-type cytochromes play essential roles in many biological activities of both prokaryotic and eukaryotic cells, including electron transfer, enzyme catalysis, and induction of apoptosis. We report a novel enrichment strategy for identifying c-type heme-containing peptides that uses nonactivated IMAC resin. The strategy demonstrated at least 7-fold enrichment for heme-containing peptides digested from a cytochrome c protein standard, and quantitative linear performance was also assessed for heme-containing peptide enrichment. Heme-containing peptides extracted from the periplasmic fraction of Shewanella oneidensis MR-1 were further identified using higher-energy collisional dissociation tandem mass spectrometry. The results demonstrated the applicability of this enrichment strategy to identify c-type heme-containing peptides from a highly complex biological sample and, at the same time, confirmed the periplasmic localization of heme-containing proteins during suboxic respiration activities of S. oneidensis MR-1.


Asunto(s)
Grupo Citocromo c/análisis , Metales/química , Resinas Sintéticas/química , Animales , Bovinos , Cromatografía de Afinidad , Cromatografía Liquida , Caballos , Metales/metabolismo , Fragmentos de Péptidos/análisis , Proteómica , Shewanella/enzimología , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...