Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38684057

RESUMEN

MXenes are highly versatile and conductive 2D materials that can significantly enhance the triboelectric properties of polymer nanocomposites. Despite the growing interest in the tunable chemistry of MXenes for energy applications, the effect of their chemical composition on triboelectric power generation has yet to be thoroughly studied. Here, we investigate the impact of the chemical composition of MXenes, specifically the Ti3CNTx carbonitride vs the most studied carbide, Ti3C2Tx, on their interactions with sodium alginate biopolymer and, ultimately, the performance of a triboelectric nanogenerator (TENG) device. Our results show that adding 2 wt % of Ti3CNTx to alginate produces a synergistic effect that generates a higher triboelectric output than the Ti3C2Tx system. Spectroscopic analyses suggest that a higher oxygen and fluorine content on the surface of Ti3CNTx enhances hydrogen bonding with the alginate matrix, thereby increasing the surface charge density of the alginate oxygen atoms. This was further supported by Kelvin probe force microscopy, which revealed a more negative surface potential on Ti3CNTx-alginate, facilitating high charge transfer between the TENG electrodes. The optimized Ti3CNTx-alginate nanogenerator delivered an output of 670 V, 15 µA, and 0.28 W/m2. Additionally, we demonstrate that plasma oxidation of the MXene surface further enhances triboelectric performance. Due to the diverse surface terminations of MXene, we show that Ti3CNTx-alginate can function as either tribopositive or tribonegative material, depending on the counter-contacting material. Our findings provide a deeper understanding of how MXene composition affects their interaction with biopolymers and resulting tunable triboelectrification behavior. This opens up new avenues for developing flexible and efficient MXene-based TENG devices.

2.
Nano Lett ; 24(11): 3490-3497, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38466136

RESUMEN

Hot electrons are crucial for unraveling the intrinsic relationship between chemical reactions and charge transfer in heterogeneous catalysis. Significant research focused on real-time detection of reaction-driven hot electron flow (chemicurrent) to elucidate the energy conversion mechanisms, but it remains elusive because carrier generation contributes to only part of the entire process. Here, a theoretical model for quantifying the chemicurrent yield is presented by clarifying the contributions of hot carrier losses from the internal emission and multiple reflections. The experimental chemicurrent yield verifies our model with a reliable mean free path of hot electrons, emphasizing the importance of comprehensive consideration of the transport process besides hot electron generation. Moreover, Pt nanoparticles (NPs)-decorated Au/TiO2 is examined, showing the role of NPs-induced carrier losses in the performance of catalytic nanodiodes. These findings are expected to contribute to understanding the hot electron detection efficiency and designing nanodiodes with enhanced hot carrier flow and catalytic activity.

3.
Adv Mater ; 36(15): e2310333, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38181178

RESUMEN

Mechanical constraints imposed on the Pd-H system can induce significant strain upon hydrogenation-induced expansion, potentially leading to changes in the thermodynamic behavior, such as the phase-transition pressure. However, the investigation of the constraint effect is often tricky due to the lack of simple experimental techniques for measuring hydrogenation-induced expansion. In this study, a capacitive-based measurement system is developed to monitor hydrogenation-induced areal expansion, which allows us to control and evaluate the magnitude of the substrate constraint. By using the measurement technique, the influence of substrate constraint intensity on the thermodynamic behavior of the Pd-H system is investigated. Through experiments with different constraint intensities, it is found that the diffefrence in the constraint intensity minimally affects the phase-transition pressure when the Pd-H system allows the release of constraint stress through plastic deformation. These experiments can improve the understanding of the substrate constraint behaviours of Pd-H systems allowing plastic deformation while demonstrating the potential of capacitive-based measurement systems to study the mechanical-thermodynamic coupling of M-H systems.

4.
Adv Sci (Weinh) ; 11(4): e2304735, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38030415

RESUMEN

An in situ measurement of a CO2 reduction reaction (CO2 RR) in Cu-phthalocyanine (CuPC) molecules adsorbed on an Au(111) surface is performed using electrochemical scanning tunneling microscopy. One intriguing phenomenon monitored in situ during CO2 RR is that a well-ordered CuPC adlayer is formed into an unsuspected nanocluster via molecular restructuring. At an electrode potential of -0.7 V versus Ag/AgCl, the Au surface is covered mainly with the clusters, showing restructuring-induced CO2 RR catalytic activity. Using a measurement of X-ray photoelectron spectroscopy, it is revealed that the nanocluster represents a Cu complex with its formation mechanism. This work provides an in situ observation of the restructuring of the electrocatalyst to understand the surface-reactive correlations and suggests the CO2 RR catalyst works at a relatively low potential using the CuPC-derived Cu nanoclusters as active species.

5.
ACS Nano ; 17(24): 25679-25688, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38054480

RESUMEN

While organic-inorganic hybrid perovskites are emerging as promising materials for next-generation photovoltaic applications, the origins and pathways of perovskite instability remain speculative. In particular, the degradation of perovskite surfaces by ambient water is a crucial subject for determining the long-term viability of perovskite-based solar cells. Here, we conducted surface characterization and atomic-scale analysis of the reaction mechanisms for methylammonium lead bromide (MA(CH3NH3)PbBr3) single crystals using ambient-pressure atomic force microscopy (AP-AFM) and near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS) in environments ranging from ultrahigh vacuum to 0.01 mbar of water vapor. MAPbBr3 single crystals, grown by a solution process, were mechanically cleaved under UHV conditions to obtain an atomically clean surface. Consecutive topography and friction force measurements in low-pressure water (pwater ≈ 10-5 mbar) revealed the formation of degraded patches, one atomic layer deep, gradually increasing their coverage until the surface was entirely covered at a water exposure of 4.7 × 104 langmuir (L). At the perimeters of these degraded patches, a higher friction coefficient was observed, along with an interstitial step height, which we attribute to a structure equivalent to that of the MA-Br terminated surface. Combined with NAP-XPS analysis, our results demonstrate that water vapor induces the dissociation of surface methylammonium ligands, eventually resulting in the depletion of the surface MA and the full coverage of hydrocarbon species after exposure to 0.01 mbar of water vapor.

6.
Artículo en Inglés | MEDLINE | ID: mdl-37927055

RESUMEN

The synergistic catalytic performances of bimetallic catalysts are often attributed to the reaction mechanism associated with the alloying process of the catalytic metals. Chemically induced hot electron flux is strongly correlated with catalytic activity, and the interference between two metals at the atomic level can have a huge impact on the hot electron generation on the bimetallic catalysts. In this study, we investigate the correlation between catalytic synergy and hot electron chemistry driven by the electron coupling effect using a model system of Au-Pd bimetallic nanoparticles. We show that the bimetallic nanocatalysts exhibit enhanced catalytic activity under the hydrogen oxidation reaction compared with that of monometallic Pd nanocatalysts. Analysis of the hot electron flux generated in each system revealed the formation of Au/PdOx interfaces, resulting in high reactivity on the bimetallic catalyst. In further experiments with engineering the Au@Pd core-shell structures, we reveal that the hot electron flux, when the topmost surface Pd atoms were less affected by inner Au, due to the concrete shell, was smaller than the alloyed one. The alloyed bimetallic catalyst forming the metal-oxide interfaces has a more direct effect on the hot electron chemistry, as well as on the catalytic reactivity. The great significance of this study is in the confirmation that the change in the hot electron formation rate with the metal-oxide interfaces can be observed by shell engineering of nanocatalysts.

7.
Small ; 19(47): e2302713, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37485739

RESUMEN

The fundamental aspects of energy dissipation on 2-dimensional (2D) atomic layers are extensively studied. Among various atomic layers, transition metal dichalcogenides (TMDs) exists in several phases based on their lattice structure, which give rise to the different phononic and electronic contributions in energy dissipation. 2H and 1T' (distorted 1T) phase MoS2 and MoTe2 atomic layers exfoliated on mica substrate are obtained and investigated their nanotribological properties with atomic force microscopy (AFM)/ friction force microscopy (FFM). Surprisingly, 1T' phase of both MoS2 and MoTe2 exhibits ≈10 times higher friction compared to 2H phase. With density functional theory analyses, the friction increase is attributed to enhanced electronic excitation, efficient phonon dissipation, and increased potential energy surface barrier at the tip-sample interface. This study suggests the intriguing possibility of tuning the friction of TMDs through phase transition, which can lead to potential application in tunable tribological devices.

8.
Nat Commun ; 14(1): 3273, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37280205

RESUMEN

Size- and shape-tailored copper (Cu) nanocrystals can offer vicinal planes for facile carbon dioxide (CO2) activation. Despite extensive reactivity benchmarks, a correlation between CO2 conversion and morphology structure has not yet been established at vicinal Cu interfaces. Herein, ambient pressure scanning tunneling microscopy reveals step-broken Cu nanocluster evolutions on the Cu(997) surface under 1 mbar CO2(g). The CO2 dissociation reaction produces carbon monoxide (CO) adsorbate and atomic oxygen (O) at Cu step-edges, inducing complicated restructuring of the Cu atoms to compensate for increased surface chemical potential energy at ambient pressure. The CO molecules bound at under-coordinated Cu atoms contribute to the reversible Cu clustering with the pressure gap effect, whereas the dissociated oxygen leads to irreversible Cu faceting geometries. Synchrotron-based ambient pressure X-ray photoelectron spectroscopy identifies the chemical binding energy changes in CO-Cu complexes, which proves the characterized real-space evidence for the step-broken Cu nanoclusters under CO(g) environments. Our in situ surface observations provide a more realistic insight into Cu nanocatalyst designs for efficient CO2 conversion to renewable energy sources during C1 chemical reactions.

9.
Nano Lett ; 23(11): 5116-5122, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37265068

RESUMEN

Significant research has focused on enhancing catalytic performance through solar energy conversion, and the design of photocatalysis incorporating surface plasmons is drawing considerable attention as a highly competitive catalyst system. Although the hot electron process is the primary mechanism in plasmonic photocatalysis, the precise function of hot electron transport in catalytic reactions remains unclear due to the absence of direct measurement. Here, we demonstrate the intrinsic relationship between surface-plasmon-driven hot electrons and catalytic activity during hydrogen oxidation, utilizing catalytic Schottky nanodiodes (Pt/Ag/TiO2) for antenna-reactor plasmonic photocatalysis. The simultaneous and independent measurements of hot electron flow and catalytic turnover rate show that the plasmonic effect amplifies the flow of reaction-induced hot electrons (chemicurrent), leading to enhanced catalytic activity. Plasmonic photocatalytic performance can be controlled with light wavelengths, intensity, surface temperature, and structures. These results elucidate the hot electron flow on photocatalysis and offer improved strategies for efficient catalytic devices.

10.
J Phys Chem Lett ; 14(23): 5241-5248, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37263187

RESUMEN

The metal-support interaction plays a crucial role in determining the catalytic activity of supported metal catalysts. Changing the facet of the support is a promising strategy for catalytic control via constructing a well-defined metal-support nanostructure. Herein, we developed cubic and octahedral Cu2O supports with (100) and (111) facets terminated, respectively, and Pt nanoparticles (NPs) were introduced. The in situ characterizations revealed the facet-dependent encapsulation of the Pt NPs by a CuO layer due to the oxidation of the Cu2O support during the CO oxidation reaction. The CuO layer on Pt at cubic Cu2O (Pt/c-Cu2O) significantly enhanced catalytic performance, while the thicker CuO layer on Pt at octahedral Cu2O suppressed CO conversion. The formation of a thin CuO layer is attributed to the dominant Pt-O-Cu bond at the Pt/c-Cu2O interface, which suppresses the adsorption of oxygen molecules. This investigation provides insight into designing high-performance catalysts via engineering the interface interaction.

11.
Nano Lett ; 23(11): 5373-5380, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-36930862

RESUMEN

Excitation of hot electrons by energy dissipation under exothermic chemical reactions on metal catalyst surfaces occurs at both solid-gas and solid-liquid interfaces. Despite extensive studies, a comparative operando study directly comparing electronic excitation by electronically nonadiabatic interactions at solid-gas and solid-liquid interfaces has not been reported. Herein, on the basis of our in situ techniques for monitoring energy dissipation as a chemicurrent using a Pt/n-Si nanodiode sensor, we observed the generation of hot electrons in both gas and liquid phases during H2O2 decomposition. As a result of comparing the current signal and oxygen evolution rate in the two phases, surprisingly, the efficiency of reaction-induced excitation of hot electrons increased by ∼100 times at the solid-liquid interface compared to the solid-gas interface. The boost of hot electron excitation in the liquid phase is due to the presence of an ionic layer lowering the potential barrier at the junction for transferring hot electrons.

12.
Artículo en Inglés | MEDLINE | ID: mdl-36763569

RESUMEN

Tuning the selectivity of CO2 hydrogenation is of significant scientific interest, especially using nickel-based catalysts. Fundamental insights into CO2 hydrogenation on Ni-based catalysts demonstrate that CO is a primary intermediate, and product selectivity is strongly dependent on the oxidation state of Ni. Therefore, modifying the electronic structure of the nickel surface is a compelling strategy for tuning product selectivity. Herein, we synthesized well dispersed Cu-Ni bimetallic nanoparticles (NPs) using a simple hydrothermal method for CO selective CO2 hydrogenation. A detailed study on the monometallic (Ni and Cu) and bimetallic (CuxNi1-x) catalysts supported on γ-Al2O3 was performed to increase CO selectivity while maintaining the high reaction rate. The Cu0.5Ni0.5/γ-Al2O3 catalyst shows a high CO2 conversion and more CO product selectivity than its monometallic counterparts. The surface electronic and geometric structure of Cu0.5Ni0.5 bimetallic NPs was studied using ambient pressure X-ray photoelectron spectroscopy (AP-XPS) and in situ diffuse reflectance infrared Fourier-transform spectroscopy under reaction conditions. The Cu core atoms migrate toward the surface, resulting in the restructuring of the Cu@Ni core-shell structure to a Cu-Ni alloy during the reaction and functioning as the active site by enhancing CO desorption. A systematic correlation is obtained between catalytic activity from a continuous fixed-bed flow reactor and the surface electronic structural details derived from AP-XPS results, establishing the structure-activity relationship. This investigation contributes to providing a strategy for controlling CO2 hydrogenation selectivity by modifying the surface structure of bimetallic NP catalysts.

13.
Int J Mol Sci ; 24(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36614285

RESUMEN

Copper-based catalysts have different catalytic properties depending on the oxidation states of Cu. We report operando observations of the Cu(111) oxidation processes using near-ambient pressure scanning tunneling microscopy (NAP-STM) and near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS). The Cu(111) surface was chemically inactive to water vapor, but only physisorption of water molecules was observed by NAP-STM. Under O2 environments, dry oxidation started at the step edges and proceeded to the terraces as a Cu2O phase. Humid oxidation of the H2O/O2 gas mixture was also promoted at the step edges to the terraces. After the Cu2O covered the surface under humid conditions, hydroxides and adsorbed water layers formed. NAP-STM observations showed that Cu2O was generated at lower steps in dry oxidation with independent terrace oxidations, whereas Cu2O was generated at upper steps in humid oxidation. The difference in the oxidation mechanisms was caused by water molecules. When the surface was entirely oxidized, the diffusion of Cu and O atoms with a reconstruction of the Cu2O structures induced additional subsurface oxidation. NAP-XPS measurements showed that the Cu2O thickness in dry oxidation was greater than that in humid oxidation under all pressure conditions.


Asunto(s)
Cobre , Vapor , Oxidación-Reducción , Cobre/química , Gases
14.
Acc Chem Res ; 55(24): 3727-3737, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36473156

RESUMEN

ConspectusDuring surface plasmon-mediated light-matter interactions, external energies on plasmonic metal nanostructures undergo energy dissipation via elastic e-e scattering, radiative luminescence, and nonradiative processes such as thermal relaxation (phonon) and electronic excitation (electron-hole pairs). In this process, surface plasmon decays dominantly through nonradiative recombination when the metal is smaller than 25 nm, forming hot carriers, including hot electrons and hot holes, with high kinetic energy of 1-3 eV. Although the ultrafast dynamics of hot carriers are on time scales ranging from femtoseconds to picoseconds, these fast-disappearing hot carriers can be collected as the steady-state photocurrent or chemicurrent by adopting the metal-semiconductor (M-S)-based platform for detecting hot carrier flow. Plasmonic hot carriers, especially as they convert to an electrochemical signal, are a promising topic, and their energy conversion mechanisms are being actively studied in the fields of renewable energy, optoelectronics, and photocatalysis. Recent studies have demonstrated that these hot carriers can both improve the performance of solar energy conversion and control the catalytic activity or selectivity by directly participating in the photoelectrochemical (PEC) reaction.In this Account, we describe the inherent relationship between hot carriers and surface plasmon as well as what role hot carriers play throughout the catalytic reaction. The recent experimental work and the theoretical analysis of in situ hot carrier generation on Au nanostructures were conducted with photoconductive atomic force microscopy and finite-difference time-domain (FDTD) simulations, respectively. We highlight the recent nanoscale visualization of hot carrier flow occurring through light-matter interactions and that the localized surface plasmon field surrounding the Au nanostructure leads to boosted hot carrier generation. In addition, we highlight the recent demonstration that plasmonic hot carriers prolong the lifetime of photoexcited carriers in the MAPbI3/Au/TiO2 hybrid nanodiode by the synergistic effect between plasmonic Au and perovskites. From this work, the solar-to-electron conversion performance of this nanodiode significantly increases due to the amplification of light absorption, which helps to design hybrid platforms for efficient hot carrier photovoltaics. We discuss the application of surface plasmon-driven hot electron generation, including hot electron-based photovoltaic devices and photocatalysts. We highlight the recent photoelectrochemical measurements on the Au/p-GaN heterostructures that are controlled by participating plasmonic hot carriers in the water splitting reaction. Furthermore, controlling the flow of both hot electrons and holes by developing hybrid platform configurations for hot carrier applications has promising opportunities for regulating the catalytic activities of hot carrier-based photocatalysis and improving the photoconversion efficiency of hot carrier-based optoelectronic devices.

15.
J Phys Chem Lett ; 13(40): 9435-9448, 2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36194546

RESUMEN

Understanding the role of energy dissipation and charge transfer under exothermic chemical reactions on metal catalyst surfaces is important for elucidating the fundamental phenomena at solid-gas and solid-liquid interfaces. Recently, many surface chemistry studies have been conducted on the solid-liquid interface, so correlating electronic excitation in the liquid-phase with the reaction mechanism plays a crucial role in heterogeneous catalysis. In this review, we introduce the detection principle of electron transfer at the solid-liquid interface by developing cutting-edge technologies with metal-semiconductor Schottky nanodiodes. The kinetics of hot electron excitation are well correlated with the reaction rates, demonstrating that the operando method for understanding nonadiabatic interactions is helpful in studying the reaction mechanism of surface molecular processes. In addition to the detection of hot electrons excited by a catalytic reaction, we highlight recent results on how the transfer of the hot electrons influences surface chemical and photoelectrochemical reactions.

16.
J Chem Phys ; 157(8): 084701, 2022 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-36050032

RESUMEN

Plasmonic photoelectrochemical (PEC) water splitting has excited immense interest, as it can overcome the intrinsic limitations of semiconductors, in terms of light absorption, by the localized-surface plasmon resonances effect. Here, to get insight into the role of plasmonic hot carriers in plasmonic water splitting, a rational design of an antenna-reactor type Pt/Ag/TiO2 metal-semiconductor Schottky nanodiode was fabricated and used as a photoanode. Using the designed PEC cell system combined with the Pt/Ag/TiO2 nanodiode, we show that the plasmonic hot carriers excited from Ag were utilized for the oxygen (O2) evolution reaction and, consequently, had a decisive role in the enhancement of the photocatalytic efficiency. These results were supported by finite-difference time-domain simulations, and the faradaic efficiency was measured by the amount of actual gas produced. Therefore, this study provides a deep understanding of the dynamics and mechanisms of plasmonic hot carriers in plasmonic-assisted PEC water splitting.

17.
J Phys Chem Lett ; 13(29): 6612-6618, 2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35834560

RESUMEN

Nanoscale friction behavior on hydrophilic surfaces (HS), influenced by a probe gliding on a confined water layer, has been investigated with friction force microscopy under various relative humidity (RH) conditions. The topographical and frictional responses of the mechanically exfoliated single-layer graphene (SLG) on native-oxide-covered silicon (SiO2/Si) and mica were both influenced by RH conditions. The ordinary phenomena at ambient conditions (i.e., higher friction on a HS than on a SLG due to different hydrophilicity), nondistinguishable height, friction of SLG with SiO2/Si at high RH (>98%), and the superlubricating behavior of friction on a HS were observed. Furthermore, the subdomain within SLG, consisting of an ice-like water layer intercalated between SLG and SiO2/Si, showed friction enhancement. These results suggest that the abundant water molecules at the interface of the probe and a HS can make a slippery surface that overcomes capillary and viscosity effects through the gliding motion of the probe.

18.
Inorg Chem ; 61(3): 1368-1376, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-34990141

RESUMEN

Designing nanostructured arrays of two-dimensional surfaces and interfaces is a versatile approach to increasing their photoelectrochemical activity. Here, phosphorus (P)-incorporated nanostructured carbon nitride (h-PCN) with an enlarged surface area is fabricated by employing trioctylphosphine oxide (TOPO) as a dopant precursor for visible-light-driven photoelectrochemical water splitting to produce hydrogen. The structural, morphological, and electronic properties of the photocatalyst have been characterized through various physicochemical techniques. We show that the incorporation of P into the g-C3N4 framework enhances light absorption over broad regimes, charge separation, and migration, as well as the specific surface area, showing excellent photocurrent enhancement (5.4 folds) in the cathodic direction as compared to bulk g-C3N4. Moreover, the photocathode shows 3.3-fold enhancement in current at zero biased potential. Without using any cocatalyst, the photoelectrodes produced 27 µmol h-1 of H2 and 13 µmol h-1of O2 with 95% faradic efficiency. The excellent photoelectrochemical behavior toward water-splitting reactions by the photoelectrode is attributed to the synergistic effect of P incorporation and active sites emerging from the nanostructured architecture of the material. This work demonstrates the facile fabrication of nanostructured P-incorporated g-C3N4 toward water-splitting reactions to produce hydrogen without using a cocatalyst in a simple and cost-effective way.

19.
Chem Commun (Camb) ; 57(60): 7382-7385, 2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34231575

RESUMEN

The effect of platinum-supported nano-shaped ceria catalysts on methanol partial oxidation and methyl formate product selectivity has been investigated. A Pt-supported CeO2 nanocube catalyst had a higher turnover frequency than nanosphere catalysts; however, nanosphere catalysts showed higher selectivity towards methyl formate. The observed ceria shape effect in catalysis was associated with the shape-dependent Pt dispersion and its oxidation states. Furthermore, in situ studies revealed that the reduced platinum and mono-dentate methoxy group were responsible for the higher turnover frequency.

20.
Nanoscale ; 13(15): 7308-7321, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33889909

RESUMEN

We report a novel versatile method for writing charged areas on diamond nanowire (DNW) surfaces using an atomic force microscopy (AFM) tip. Transmission electron microscopy (TEM) investigations revealed the existence of abundant plate-like diamond aggregates, which were encased in layers of graphite, forming nano-sized diamond-graphite composites (DGCs) on DNW surfaces. These DGCs are the main feature, acting as charge-trapping centers and storing electrostatic charge. A hydrogenation process has been observed effectively enhancing the charge-trapping properties of these DNW materials. The effective charge trapping properties with hydrogenation are ascribed to the disintegration of the DGCs into smaller pieces, with an overall increase in the metallic nanographitic phase fractions in a dielectric diamond matrix. Moreover, the written charge on the surface can be easily modified, re-written, or completely erased, enabling application in diamond-based re-writable electronic devices. However, excessive hydrogenation degrades the charge-trapping properties, which is attributed to the etching of the DGCs from the surface. This study demonstrates the potential importance of a simple hydrogenation process in effective electrostatic charge trapping and storage for diamond related nanocarbon materials and the role of DGCs to further enhance it.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...