Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Vis Exp ; (204)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38436377

RESUMEN

The field of plant biotechnology has witnessed remarkable advancements in recent years, revolutionizing the ability to manipulate and engineer plants for various purposes. However, as research in this field increases in diversity and becomes increasingly sophisticated, the need for early, efficient, dependable, and high-throughput transient screening solutions to narrow down strategies proceeding to stable transformation is more apparent. One method that has re-emerged in recent years is the utilization of plant protoplast, for which methods of isolation and transfection are available in numerous species, tissues, and developmental stages. This work describes a simple automated protocol for the randomized preparation of plasmid within a 96-well plate, a method for the isolation of etiolated maize leaf protoplast, and an automated transfection procedure. The adoption of automated solutions in plant biotechnology, exemplified by these novel liquid handling protocols for plant protoplast transfection, represents a significant advancement over manual methods. By leveraging automation, researchers can easily overcome the limitations of traditional methods, enhance efficiency, and accelerate scientific progress.


Asunto(s)
Protoplastos , Zea mays , Zea mays/genética , Transgenes , Transfección , Hojas de la Planta/genética
2.
bioRxiv ; 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37873288

RESUMEN

DELLA proteins are conserved master growth regulators that play a central role in controlling plant development in response to internal and environmental cues. DELLAs function as transcription regulators, which are recruited to target promoters by binding to transcription factors (TFs) and histone H2A via its GRAS domain. Recent studies showed that DELLA stability is regulated post-translationally via two mechanisms, phytohormone gibberellin-induced polyubiquitination for its rapid degradation, and Small Ubiquitin-like Modifier (SUMO)- conjugation to alter its accumulation. Moreover, DELLA activity is dynamically modulated by two distinct glycosylations: DELLA-TF interactions are enhanced by O -fucosylation, but inhibited by O -linked N -acetylglucosamine ( O -GlcNAc) modification. However, the role of DELLA phosphorylation remains unclear. Here, we identified phosphorylation sites in REPRESSOR OF ga1-3 (RGA, an AtDELLA) purified from Arabidopsis by tandem mass spectrometry analysis, and showed that phosphorylation of the RGA LKS-peptide in the poly- S/T region enhances RGA-H2A interaction and RGA association with target promoters. Interestingly, phosphorylation does not affect RGA-TF interactions. Our study has uncovered that phosphorylation is a new regulatory mechanism of DELLA activity.

3.
Nat Plants ; 9(8): 1291-1305, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37537399

RESUMEN

The DELLA genes, also known as 'Green Revolution' genes, encode conserved master growth regulators that control plant development in response to internal and environmental cues. Functioning as nuclear-localized transcription regulators, DELLAs modulate expression of target genes via direct protein-protein interaction of their carboxy-terminal GRAS domain with hundreds of transcription factors (TFs) and epigenetic regulators. However, the molecular mechanism of DELLA-mediated transcription reprogramming remains unclear. Here by characterizing new missense alleles of an Arabidopsis DELLA, repressor of ga1-3 (RGA), and co-immunoprecipitation assays, we show that RGA binds histone H2A via the PFYRE subdomain within its GRAS domain to form a TF-RGA-H2A complex at the target chromatin. Chromatin immunoprecipitation followed by sequencing analysis further shows that this activity is essential for RGA association with its target chromatin globally. Our results indicate that, although DELLAs are recruited to target promoters by binding to TFs via the LHR1 subdomain, DELLA-H2A interaction via the PFYRE subdomain is necessary to stabilize the TF-DELLA-H2A complex at the target chromatin. This study provides insights into the two distinct key modular functions in DELLA for its genome-wide transcription regulation in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Giberelinas/metabolismo , Histonas/genética , Histonas/metabolismo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Cromatina/metabolismo
4.
Methods Mol Biol ; 2653: 129-149, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36995624

RESUMEN

In an era of cost-efficient gene synthesis and high-throughput construct assembly, the onus of scientific experimentation is on the rate of in vivo testing for the identification of top performing candidates or designs. Assay platforms that are relevant to the species of interest and in the tissue of choice are highly desirable. A protoplast isolation and transfection method that is compatible with a large repertoire of species and tissues would be the platform of choice. A necessary aspect of this high-throughput screening approach is the need to handle many delicate protoplast samples at the same time, which is a bottleneck for manual operation. Such bottlenecks can be mitigated with the use of automated liquid handlers for the execution of protoplast transfection steps. The method described within this chapter utilizes a 96-well head for simultaneous, high-throughput initiation of transfection. While initially developed and optimized for use with etiolated maize leaf protoplasts, the automated protocol has also been demonstrated to be compatible with other established protoplast systems, such as soybean immature embryo derived protoplast, similarly described within. This chapter also includes instructions for a sample randomization design to reduce the impact of edge effects, which might be present when microplates are used for fluorescence readout following transfection. We also describe a streamlined, expedient, and cost-effective protocol for determining gene editing efficiencies using the T7E1 endonuclease cleavage assay with a publicly available image analysis tool.


Asunto(s)
Edición Génica , Protoplastos , Protoplastos/metabolismo , Transfección , Transgenes , Hojas de la Planta/genética
5.
Plant Physiol ; 173(2): 1463-1474, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28057895

RESUMEN

PICKLE (PKL) is an ATP-dependent chromodomain-helicase-DNA-binding domain (CHD3) chromatin remodeling enzyme in Arabidopsis (Arabidopsis thaliana). Previous studies showed that PKL promotes embryonic-to-vegetative transition by inhibiting expression of seed-specific genes during seed germination. The pkl mutants display a low penetrance of the "pickle root" phenotype, with a thick and green primary root that retains embryonic characteristics. The penetrance of this pickle root phenotype in pkl is dramatically increased in gibberellin (GA)-deficient conditions. At adult stages, the pkl mutants are semidwarfs with delayed flowering time, which resemble reduced GA-signaling mutants. These findings suggest that PKL may play a positive role in regulating GA signaling. A recent biochemical analysis further showed that PKL and GA signaling repressors DELLAs antagonistically regulate hypocotyl cell elongation genes by direct protein-protein interaction. To elucidate further the role of PKL in GA signaling and plant development, we studied the genetic interaction between PKL and DELLAs using the hextuple mutant containing pkl and della pentuple (dP) mutations. Here, we show that PKL is required for most of GA-promoted developmental processes, including vegetative growth such as hypocotyl, leaf, and inflorescence stem elongation, and phase transitions such as juvenile-to-adult leaf and vegetative-to-reproductive phase. The removal of all DELLA functions (in the dP background) cannot rescue these phenotypes in pkl RNA-sequencing analysis using the ga1 (a GA-deficient mutant), pkl, and the ga1 pkl double mutant further shows that expression of 80% of GA-responsive genes in seedlings is PKL dependent, including genes that function in cell elongation, cell division, and phase transitions. These results indicate that the CHD3 chromatin remodeler PKL is required for regulating gene expression during most of GA-regulated developmental processes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , ADN Helicasas/metabolismo , Giberelinas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , ADN Helicasas/genética , Regulación de la Expresión Génica de las Plantas , Germinación , Familia de Multigenes , Mutación , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Semillas/genética , Semillas/crecimiento & desarrollo , Transducción de Señal
6.
Plant Physiol ; 171(4): 2760-70, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27255484

RESUMEN

The phytohormone gibberellin (GA) plays a key role in promoting stem elongation in plants. Previous studies show that GA activates its signaling pathway by inducing rapid degradation of DELLA proteins, GA signaling repressors. Using an activation-tagging screen in a reduced-GA mutant ga1-6 background, we identified AtERF11 to be a novel positive regulator of both GA biosynthesis and GA signaling for internode elongation. Overexpression of AtERF11 partially rescued the dwarf phenotype of ga1-6 AtERF11 is a member of the ERF (ETHYLENE RESPONSE FACTOR) subfamily VIII-B-1a of ERF/AP2 transcription factors in Arabidopsis (Arabidopsis thaliana). Overexpression of AtERF11 resulted in elevated bioactive GA levels by up-regulating expression of GA3ox1 and GA20ox genes. Hypocotyl elongation assays further showed that overexpression of AtERF11 conferred elevated GA response, whereas loss-of-function erf11 and erf11 erf4 mutants displayed reduced GA response. In addition, yeast two-hybrid, coimmunoprecipitation, and transient expression assays showed that AtERF11 enhances GA signaling by antagonizing the function of DELLA proteins via direct protein-protein interaction. Interestingly, AtERF11 overexpression also caused a reduction in the levels of another phytohormone ethylene in the growing stem, consistent with recent finding showing that AtERF11 represses transcription of ethylene biosynthesis ACS genes. The effect of AtERF11 on promoting GA biosynthesis gene expression is likely via its repressive function on ethylene biosynthesis. These results suggest that AtERF11 plays a dual role in promoting internode elongation by inhibiting ethylene biosynthesis and activating GA biosynthesis and signaling pathways.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Giberelinas/biosíntesis , Tallos de la Planta/crecimiento & desarrollo , Proteínas Represoras/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Arabidopsis/anatomía & histología , Arabidopsis/genética , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Modelos Biológicos , Tallos de la Planta/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcripción Genética
7.
Plant Cell ; 28(6): 1388-405, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27303023

RESUMEN

The bHLH transcription factor PHYTOCHROME INTERACTING FACTOR1 (PIF1) binds G-box elements in vitro and inhibits light-dependent germination in Arabidopsis thaliana A previous genome-wide analysis of PIF1 targeting indicated that PIF1 binds 748 sites in imbibed seeds, only 59% of which possess G-box elements. This suggests the G-box is not the sole determinant of PIF1 targeting. The targeting of PIF1 to specific sites could be stabilized by PIF1-interacting transcription factors (PTFs) that bind other nearby sequence elements. Here, we report PIF1 targeting sites are enriched with not only G-boxes but also with other hexameric sequence elements we named G-box coupling elements (GCEs). One of these GCEs possesses an ACGT core and serves as a binding site for group A bZIP transcription factors, including ABSCISIC ACID INSENSITIVE5 (ABI5), which inhibits seed germination in abscisic acid signaling. PIF1 interacts with ABI5 and other group A bZIP transcription factors and together they target a subset of PIF1 binding sites in vivo. In vitro single-molecule fluorescence imaging confirms that ABI5 facilitates PIF1 binding to DNA fragments possessing multiple G-boxes or the GCE alone. Thus, we show in vivo PIF1 targeting to specific binding sites is determined by its interaction with PTFs and their binding to GCEs.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Sitios de Unión/genética , Sitios de Unión/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Unión Proteica/genética , Unión Proteica/fisiología , Factores de Transcripción/genética
8.
Mol Plant ; 8(12): 1725-36, 2015 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-26298008

RESUMEN

BOTRYTIS SUSCEPTIBLE1 INTERACTOR (BOI) and its three homologs (BOIs) are RING domain-containing proteins that repress flowering. Here, we investigated how BOIs repress flowering. Genetic analysis of the boiQ quadruple mutant indicates that BOIs repress flowering mainly through FLOWERING LOCUS T (FT). BOIs repress the expression of FT by CONSTANS (CO)-dependent and -independent mechanisms: in the CO-dependent mechanism, BOIs bind to CO, inhibit the targeting of CO to the FT locus, and thus repress the expression of FT; in the CO-independent mechanism, BOIs target the FT locus via a mechanism that requires DELLAs but not CO. This dual repression of FT makes BOIs strong repressors of flowering in both CO-dependent and CO-independent pathways in Arabidopsis thaliana. Our finding that BOIs inhibit CO targeting further suggests that, in addition to modulating CO mRNA expression and CO protein stability, flowering regulation can also modulate the targeting of CO to FT.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , Flores/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN/genética , Flores/química , Flores/genética , Flores/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Estructura Terciaria de Proteína , Proteínas Represoras/química , Proteínas Represoras/genética , Factores de Transcripción/química , Factores de Transcripción/genética
9.
Plant Cell ; 27(8): 2301-13, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26276832

RESUMEN

PHYTOCHROME-INTERACTING FACTOR1 (PIF1) is a basic helix-loop-helix transcription factor that inhibits light-dependent seed germination in Arabidopsis thaliana. However, it remains unclear whether PIF1 requires other factors to regulate its direct targets. Here, we demonstrate that LEUNIG_HOMOLOG (LUH), a Groucho family transcriptional corepressor, binds to PIF1 and coregulates its targets. Not only are the transcriptional profiles of the luh and pif1 mutants remarkably similar, more than 80% of the seeds of both genotypes germinate in the dark. We show by chromatin immunoprecipitation that LUH binds a subset of PIF1 targets in a partially PIF1-dependent manner. Unexpectedly, we found LUH binds and coregulates not only PIF1-activated targets but also PIF1-repressed targets. Together, our results indicate LUH functions with PIF1 as a transcriptional coregulator to inhibit seed germination.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Germinación/genética , Proteínas Represoras/genética , Semillas/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Análisis por Conglomerados , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Germinación/efectos de la radiación , Immunoblotting , Luz , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Unión Proteica , Proteínas Represoras/metabolismo , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Factores de Tiempo
10.
Plant Cell ; 25(12): 4863-78, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24326588

RESUMEN

Seeds monitor the environment to germinate at the proper time, but different species respond differently to environmental conditions, particularly light and temperature. In Arabidopsis thaliana, light promotes germination but high temperature suppresses germination. We previously reported that light promotes germination by repressing SOMNUS (SOM). Here, we examined whether high temperature also regulates germination through SOM and found that high temperature activates SOM expression. Consistent with this, som mutants germinated more frequently than the wild type at high temperature. The induction of SOM mRNA at high temperature required abscisic acid (ABA) and gibberellic acid biosynthesis, and ABA-insensitive3 (ABI3), ABI5, and DELLAs positively regulated SOM expression. Chromatin immunoprecipitation assays indicated that ABI3, ABI5, and DELLAs all target the SOM promoter. At the protein level, ABI3, ABI5, and DELLAs all interact with each other, suggesting that they form a complex on the SOM promoter to activate SOM expression at high temperature. We found that high-temperature-inducible genes frequently have RY motifs and ABA-responsive elements in their promoters, some of which are targeted by ABI3, ABI5, and DELLAs in vivo. Taken together, our data indicate that ABI3, ABI5, and DELLAs mediate high-temperature signaling to activate the expression of SOM and other high-temperature-inducible genes, thereby inhibiting seed germination.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/fisiología , Proteínas Portadoras/genética , Regulación de la Expresión Génica de las Plantas , Temperatura , Factores de Transcripción/fisiología , Ácido Abscísico/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Portadoras/fisiología , Germinación/genética , Giberelinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , ARN Mensajero/metabolismo , Semillas/genética , Semillas/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
Plant Cell ; 25(3): 927-43, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23482857

RESUMEN

DELLA proteins, consisting of GA INSENSITIVE, REPRESSOR OF GA1-3, RGA-LIKE1 (RGL1), RGL2, and RGL3, are central repressors of gibberellin (GA) responses, but their molecular functions are not fully understood. We isolated four DELLA-interacting RING domain proteins, previously designated as BOTRYTIS SUSCEPTIBLE1 INTERACTOR (BOI), BOI-RELATED GENE1 (BRG1), BRG2, and BRG3 (collectively referred to as BOIs). Single mutants of each BOI gene failed to significantly alter GA responses, but the boi quadruple mutant (boiQ) showed a higher seed germination frequency in the presence of paclobutrazol, precocious juvenile-to-adult phase transition, and early flowering, all of which are consistent with enhanced GA signaling. By contrast, BOI overexpression lines displayed phenotypes consistent with reduced GA signaling. Analysis of a gai-1 boiQ pentuple mutant further indicated that the GAI protein requires BOIs to inhibit a subset of GA responses. At the molecular level, BOIs did not significantly alter the stability of a DELLA protein. Instead, BOI and DELLA proteins are targeted to the promoters of a subset of GA-responsive genes and repress their expression. Taken together, our results indicate that the DELLA and BOI proteins inhibit GA responses by interacting with each other, binding to the same promoters of GA-responsive genes, and repressing these genes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Giberelinas/metabolismo , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Genes de Plantas , Germinación , Fenotipo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Unión Proteica , Mapeo de Interacción de Proteínas , Estabilidad Proteica , Dominios RING Finger , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Semillas/efectos de los fármacos , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Triazoles/farmacología , Técnicas del Sistema de Dos Híbridos
12.
Plant Cell Physiol ; 54(4): 555-72, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23378449

RESUMEN

Seed dormancy, a seed status that prohibits germination even in the presence of inductive germination signals, is a poorly understood process. To identify molecular components that regulate seed dormancy, we screened T-DNA insertion lines and identified a mutant designated honsu (hon). HON loss-of-function mutants display deep seed dormancy, whereas HON-overexpressing lines display shallow seed dormancy. HON encodes a seed-specific group A phosphatase 2C (PP2C) and is one of the major negative regulators of seed dormancy among group A PP2Cs. Like other PP2C family members, HON interacts with PYR1/RCAR11 in the presence of ABA. Our analysis indicates that HON inhibits ABA signaling and activates gibberellic acid signaling, and both of these conditions must be satisfied to promote the release of seed dormancy. However, HON mRNA levels are increased in mutants displaying deep seed dormancy or under conditions that deepen seed dormancy, and decreased in mutants displaying shallow seed dormancy or under conditions that promote the release of seed dormancy. Taken together, our results indicate that the expression of HON mRNA is homeostatically regulated by seed dormancy.


Asunto(s)
Ácido Abscísico/farmacología , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/fisiología , Fosfoproteínas Fosfatasas/metabolismo , Latencia en las Plantas/fisiología , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/fisiología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , ADN Bacteriano , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Fosfoproteínas Fosfatasas/genética , Plantas Modificadas Genéticamente/metabolismo , Unión Proteica/efectos de los fármacos , Unión Proteica/genética , Proteína Fosfatasa 2C
13.
Plant J ; 72(4): 537-46, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22849408

RESUMEN

Phytochromes are red and far-red light receptors in plants that mediate critical responses to light throughout the lifecycle. They achieve this in part by targeting negatively acting bHLH transcription factors called phytochrome-interacting factors (PIFs) for degradation within the nucleus. However, it is not known whether protein degradation is the primary mechanism by which phytochromes inhibit these repressors of photomorphogenesis. Here, we use chromatin immunoprecipitation to show that phyB inhibits the regulatory activity of PIF1 and PIF3 by releasing them from their DNA targets. The N-terminal fragment of phyB (NG-GUS-NLS; NGB) also inhibits binding of PIF3 to its target promoters. However, unlike full-length phyB, NGB does not promote PIF3 degradation, establishing the activity of NGB reflects its ability to inhibit PIF binding to DNA. We further show that Pfr forms of both full-length phyB and NGB inhibit DNA binding of PIF1 and PIF3 in vitro. Taken together, our results indicate that phyB inhibition of PIF function involves two separate processes: sequestration and protein degradation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Fitocromo B/metabolismo , Regiones Promotoras Genéticas , Mapeo de Interacción de Proteínas/métodos , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Inmunoprecipitación de Cromatina , Luz , Fosforilación , Fitocromo B/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/efectos de la radiación , Unión Proteica , Estabilidad Proteica , Estructura Terciaria de Proteína , Proteolisis , Transcripción Genética
14.
Plant Cell ; 23(4): 1404-15, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21467583

RESUMEN

A previous study showed that SOMNUS (SOM), which encodes a C3H-type zinc finger protein, is a key negative regulator of seed germination that acts downstream of PHYTOCHROME INTERACTING FACTOR3-LIKE5 (PIL5). However, it was not determined if PIL5 is the sole regulator of SOM expression. Public microarray data suggest that the expression of SOM mRNA is regulated also by ABSCISIC ACID INSENSITIVE3 (ABI3), another key regulator of seed germination. By analyzing abi3 mutants and ABI3 overexpression lines, we show here that ABI3 activates the expression of SOM mRNA collaboratively with PIL5 in imbibed seeds. Chromatin immunoprecipitation analysis coupled with electrophoretic mobility shift assay indicate that ABI3 activates the expression of SOM mRNA by directly binding to two RY motifs present in the SOM promoter in vivo, which is further supported by the greatly decreased expression of a reporter gene driven by a SOM promoter bearing mutated RY motifs. At the protein level, the ABI3 protein interacts with the PIL5 protein. The ABI3-PIL5 interaction, however, does not affect targeting of ABI3 and PIL5 to SOM promoters. Taken together, our results indicate that ABI3 and PIL5 collaboratively activate the expression of SOM mRNA by directly binding to and interacting with each other at the SOM promoter.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas Portadoras/genética , Regulación de la Expresión Génica de las Plantas , Regiones Promotoras Genéticas/genética , Semillas/genética , Arabidopsis/efectos de la radiación , Proteínas Portadoras/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Luz , Unión Proteica/efectos de la radiación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Semillas/efectos de la radiación , Factores de Transcripción
15.
Plant Cell ; 21(2): 403-19, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19244139

RESUMEN

PHYTOCHROME INTERACTING FACTOR 3-LIKE5 (PIL5) is a basic helix-loop-helix transcription factor that inhibits seed germination by regulating the expression of gibberellin (GA)- and abscisic acid (ABA)-related genes either directly or indirectly. It is not yet known, however, whether PIL5 regulates seed germination solely through GA and ABA. Here, we used Chromatin immunoprecipitation-chip (ChIP-chip) analysis to identify 748 novel PIL5 binding sites in the Arabidopsis thaliana genome. Consistent with the molecular function of PIL5 as a transcription regulator, most of the identified binding sites are located in gene promoter regions. Binding site analysis shows that PIL5 binds to its target sites mainly through the G-box motif in vivo. Microarray analysis reveals that phytochromes regulate a large number of genes mainly through PIL5 during seed germination. Comparison between the ChIP-chip and microarray data indicates that PIL5 regulates 166 genes by directly binding to their promoters. Many of the identified genes encode transcription regulators involved in hormone signaling, while some encode enzymes involved in cell wall modification. Interestingly, PIL5 directly regulates many transcription regulators of hormone signaling and indirectly regulates many genes involved in hormone metabolism. Taken together, our data indicate that PIL5 inhibits seed germination not just through GA and ABA, but also by coordinating hormone signals and modulating cell wall properties in imbibed seeds.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Regulación de la Expresión Génica de las Plantas , Germinación/genética , Semillas/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Sitios de Unión , Inmunoprecipitación de Cromatina , Perfilación de la Expresión Génica , Genoma de Planta , Análisis de Secuencia por Matrices de Oligonucleótidos , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Regiones Promotoras Genéticas , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Transducción de Señal/genética
16.
Development ; 133(21): 4305-14, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17038516

RESUMEN

Plants have diversified their leaf morphologies to adapt to diverse ecological niches. The molecular components responsible for regulating leaf morphology, however, have not been fully elucidated. By screening Arabidopsis activation-tagging lines, we identified a dominant mutant, which we designated longifolia1-1D (lng1-1D). lng1-1D plants were characterized by long petioles, narrow but extremely long leaf blades with serrated margins, elongated floral organs, and elongated siliques. The elongated leaves of the mutant were due to increased polar cell elongation rather than increased cell proliferation. Molecular characterization revealed that this phenotype was caused by overexpression of the novel gene LNG1, which was found to have a homolog, LNG2,in Arabidopsis. To further examine the role of the LNG genes, we characterized lng1 and lng2 loss-of-function mutant lines. In contrast to the elongated leaves of lng1-1D plants, the lng1 and lng2 mutants showed slightly decreased leaf length. Furthermore, the lng1-3 lng2-1 double mutant showed further decreased leaf length associated with less longitudinal polar cell elongation. The leaf widths in lng1-3 lng2-1 mutant plants were similar to those in wild type, implying that the role of LNG1 and LNG2 on polar cell elongation is similar to that of ROTUNDIFOLIA3 (ROT3). However, analysis of a lng1-3 lng2-1 rot3-1 triple mutant and of a lng1-1D rot3-1 double mutant indicated that LNG1 and LNG2 promote longitudinal cell elongation independently of ROT3. Taken together, these findings indicate that LNG1 and LNG2 are new components that regulate leaf morphology by positively promoting longitudinal polar cell elongation independently of ROT3 in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/anatomía & histología , Arabidopsis/genética , Genes de Plantas , Hojas de la Planta/anatomía & histología , Arabidopsis/fisiología , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Flores/citología , Morfogénesis , Mutación , Epidermis de la Planta/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
17.
Theor Appl Genet ; 109(8): 1562-7, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15448898

RESUMEN

A negative selectable marker gene, codA, was successfully co-transformed with a GUS reporter gene to develop selectable marker gene-free transgenic plants. The pNC binary vector contained a T-DNA harboring the codA gene next to the nptII gene, while a second binary vector, pHG, contained a GUS reporter gene. Tobacco plants ( Nicotiana tabacum cv. Samsun NN) were co-transformed via the mixture method with Agrobacterium tumefaciens LBA4404 strains harboring pNC and pHG, respectively. Seeds harvested from the co-transformants were sown on germination media containing 5-fluorocytosine (5-FC). Analysis of the progeny by GUS staining and PCR amplification revealed that all of the 5-FC-resistant R(1) plants were codA free, and that the codA gene segregated independently of the GUS gene. Because codA-free seedlings developed normally on 5-FC-containing medium, we suggest that co-transformation with negatively selectable markers is a viable method for the production of easily distinguished, selectable marker gene-free transgenic plants.


Asunto(s)
Marcadores Genéticos/genética , Nicotiana/genética , Transformación Genética/genética , Agrobacterium tumefaciens , Southern Blotting , Cartilla de ADN , ADN Bacteriano/genética , Ingeniería Genética/métodos , Vectores Genéticos , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...