Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Heliyon ; 10(10): e30996, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38778963

RESUMEN

Objective: This in vitro study aimed to quantitatively and qualitatively evaluate and compare the horizontal and vertical accuracies of complete-arch casts produced by six 3D printers with different printing principles and resolutions using a low-viscosity resin material. Methods: A reference cast was designed by CAD software. The 3D printers used were DLPa (Asiga MAX), DLPk (cara Print 4.0), LCD2o (Ondemand 2 K Printer), LCD2p (Photon Mono X), LCD4s (SONIC 4 K), and SLA (ZENITH U). Ten casts were printed for each 3D printer using a low-viscosity resin. The accuracy of each printed cast was evaluated using shell-to-shell deviations, 12 linear, one angular, and five height deviations, with a reference cast as the control. The surface features of the casts were examined using field-emission scanning electron microscopy (FE-SEM) and digital cameras. Results: The evaluation of shell-to-shell deviation revealed that DLPa and SLA printers exhibited low trueness values, whereas LCD printers displayed high trueness values. Among the LCD printers, LCD4s and LCD2o exhibited the lowest and highest trueness values, respectively. DLPa printers showed lower trueness values for intercanine and intermolar distances, whereas LCD printers generally demonstrated high trueness values. However, LCD4s exhibited similar trueness values to those of SLA and DLPk. The height deviation was smallest in the anterior area, whereas the largest height deviation occurred in the canine teeth. The surface characteristics indicated that the SLA casts had greater light reflection and blunt canine tips. The FE-SEM observations highlighted that the LCD and DLP printers exhibited varying layer characteristics, with some presenting rough and uneven borders in the anterior lingual area. Significance: The accuracy of 3D printed casts varied among the 3D printer groups: DLPa and SLA were accurate for shell-to-shell deviation, with DLPa being the most accurate for linear and angular deviations. Regardless of the XY resolution, the DLP printers outperformed the LCD printers. Among the LCD group of 3D printers, higher-resolution LCD4s demonstrated increased accuracy. The SLA exhibited soft layer borders in the FE-SEM owing to its laser spot characteristics and prominent light reflection in the digital camera images.

2.
J Mech Behav Biomed Mater ; 154: 106536, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38579394

RESUMEN

OBJECTIVE: This study aimed to conduct a comparison of trueness and physical and surface properties among five distinct types of additive manufactured (AM) zirconia crowns and zirconia crowns produced using the subtractive manufacturing (SM). MATERIAL AND METHODS: Zirconia crowns were fabricated using five distinct techniques, each varying in the method of slurry transfer and photocuring source. Each experimental group utilized either one of the four digital light processing (DLP)-based techniques (DLP spreading, DLP spreading gradation, DLP vat and DLP circular spreading) or the stereolithography (SLA)-based technique (SLA spreading). The control (CON) group employed SM. To assess accuracy, trueness was measured between the scan and reference data. To analyze the physical properties, voids were examined using high-energy spiral micro-computed tomography scans, and the crystal structure analysis was performed using X-ray diffraction (XRD). Surface roughness was assessed through laser scanning microscopy. RESULTS: Differences in the trueness of internal surfaces of crowns were found among the groups (P < 0.05). Trueness varied across the measurement surfaces (occlusal, lateral, and marginal) in all the groups except for the DLP spreading gradation group (P < 0.05). Voids were observed in all AM groups. All groups showed similar XRD patterns. All AM groups showed significantly greater surface roughness compared to the CON group (P < 0.001). CONCLUSION: The AM zirconia crowns showed bubbles and a rougher surface compared to the SM crowns. All groups exhibited typical zirconia traits and trueness levels within clinically acceptable limits, suggesting that current zirconia AM techniques could be suitable for dental applications.


Asunto(s)
Diseño Asistido por Computadora , Coronas , Microtomografía por Rayos X , Circonio , Propiedades de Superficie
3.
J Dent ; 144: 104969, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38537881

RESUMEN

OBJECTIVES: Natural teeth and dental restorations present with various shades and levels of translucency. This study aimed to determine whether these variations in ceramic crowns and scan powder application affect the trueness of intraoral scanners. METHODS: Eight identical premade resin typodonts, each prepared for a crown on the maxillary right second molar, were used. Eight lithium disilicate crowns, distinguished by two levels of translucency (high and low) and four shades (BL1, A2, A3, and A4), were fabricated to an identical design and cemented onto each typodont, providing eight distinct experimental groups (2 levels of translucency × 4 shades). Reference scans were acquired using a desktop scanner. Test scans were performed ten times for each experimental group using two different intraoral scanners (Medit i700 and CEREC Primescan AC), with and without the application of scan powder (n = 10). Three-dimensional metrology software was used to assess the trueness of the intraoral scan datasets. Statistical analysis involved the Kruskal-Wallis H test, Mann-Whitney U test, and independent t-test (α=0.05). RESULTS: For powder-free intraoral scan datasets, the crown shade did not significantly affect trueness within each translucency group (P = 1.000). For both intraoral scanners, compared with low translucency groups, higher marked deviations were exhibited by high translucency groups (P<.001). Scan powder use largely mitigated these differences (P>.05) and enhanced the trueness of the intraoral scan (P<.01). CONCLUSIONS: Shade did not significantly influence the trueness of intraoral scans. High-translucency crowns were scanned with less accuracy than were low-translucency crowns. CLINICAL SIGNIFICANCE: Unlike tooth shade, translucency significantly affected the accuracy of intraoral scans. Therefore, considering the use of scan powder when scanning objects with high translucency may be beneficial.


Asunto(s)
Diseño Asistido por Computadora , Coronas , Porcelana Dental , Diseño de Prótesis Dental , Polvos , Humanos , Porcelana Dental/química , Color , Coloración de Prótesis , Imagenología Tridimensional/métodos , Cerámica , Diente Molar/diagnóstico por imagen , Diente Molar/anatomía & histología , Procesamiento de Imagen Asistido por Computador/métodos
4.
J Prosthet Dent ; 131(3): 529.e1-529.e9, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38212154

RESUMEN

STATEMENT OF PROBLEM: The mechanical properties of 3 dimensionally (3D) printed zirconia have been reported to be comparable with those of milled zirconia, except for the flexural strength. However, most previous studies tested 3 mol% yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP), making it necessary to study 3D printed zirconia with 4 mol% yttria content (4Y-TZP). PURPOSE: The purpose of this in vitro study was to compare the flexural strength of 3D printed 4Y-TZP with 3Y-TZP materials and milled 4Y-TZP. MATERIAL AND METHODS: A total of 80 disk specimens (Ø15×1.5 mm) were fabricated and divided into 4 groups (n=20) using the fabrication method and yttria content: milled 3Y-TZP (Katana HT; Kuraray Noritake), 3D printed 3Y-TZP (TZ-3Y-E; Tosoh), milled 4Y-TZP (Katana STML; Kuraray Noritake), and 3D printed 4Y-TZP (3DMAT; Genoss). The biaxial flexural strength was determined with a piston-on-3-ball test (n=15). The flexural strength of each specimen was measured, and the Weibull modulus (m) and characteristic strength (σ0) were estimated from the fracture load distribution. Two intact and fractured specimens were examined with scanning electron microscopy (SEM). The crystalline phase of the specimens in each group was identified through X-ray diffraction (XRD) analysis (n=5). A 1-way ANOVA was used to compare the flexural strength among different groups. Subsequently, pairwise comparisons were conducted with the Tukey post hoc method (α=.05). RESULTS: The flexural strength of 3D printed 4Y-TZP was significantly higher than that of milled 4Y-TZP (P<.001). In contrast, the flexural strength of 3D printed 3Y-TZP was significantly lower than that of milled 3Y-TZP (P<.001). X-ray diffraction (XRD) analysis revealed that the tetragonal phase was the dominant phase in all groups, with the identification of some cubic phase peaks. CONCLUSIONS: Three dimensionally printed 4Y-TZP showed significantly higher flexural strength than milled 4Y-TZP and exhibited a clinically acceptable flexural strength exceeding 800 MPa.


Asunto(s)
Resistencia Flexional , Impresión Tridimensional , Itrio , Circonio , Microscopía Electrónica de Rastreo
5.
BMC Oral Health ; 23(1): 1002, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-38097978

RESUMEN

BACKGROUND: The study on oral health-related quality of life (OHRQoL) of disabled patients is rare but critical for welfare of patients. The aim of this study was to examine the effect of fixed implants in edentulous areas on OHRQoL in Korean disabled patients. METHODS: The OHRQoL of 63 disabled individuals was evaluated using the Oral Health Impact Profile (OHIP)-14 questionnaires and studied by potential affecting variables such as age, sex, disability severity, and time of disability acquisition. Wilcoxon-signed rank tests were used to examine the OHIP-14 scores for those who had pre/post-fixed implants. Multiple linear regression analysis was used to examine the relationships between factors and OHIP-14 scores before and after implants. A partial correlation analysis was also performed to determine which variables influenced OHIP-14 scores before and after treatment. The Mann-Whitney test was employed for sex and time of disability acquisition analysis (α = 0.05). RESULTS: Significant improvement was found in OHIP-14 post-implant treatment scores (P < .001). After implant treatment, the severity of disability produced significantly different results (P = .009). Pearson's correlation coefficient between severity of disability and pre/post-implant OHIP-14 scores was 0.265 (P = .030). After controlling for severity of disability, the results showed older patients had lower OHIP-14 scores (P = .032). No differences were found for sex or time of disability acquisition (congenital vs. acquired). CONCLUSIONS: Fixed implant treatment improved OHRQoL for disabled patients, and the severity of disability was positively correlated with improvement of OHRQoL. For patients with a similar level of disability, the OHRQoL decreased with age.


Asunto(s)
Implantes Dentales , Calidad de Vida , Humanos , Estudios Retrospectivos , Salud Bucal , Encuestas y Cuestionarios
6.
J Prosthet Dent ; 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38097424

RESUMEN

STATEMENT OF PROBLEM: The marginal fit of dental prostheses is a clinically significant issue, and dental computer-aided design software programs use automated methods to expedite the extraction of finish lines. The accuracy of these automated methods should be evaluated. PURPOSE: The purpose of this study was to compare the accuracy of a new hybrid method with existing software programs that extract finish lines using fully automated and semiautomated methods. MATERIAL AND METHODS: A total of 182 jaw scans containing at least 1 natural tooth abutment were collected and divided into 2 groups depending on how the digital data were created. Group DS used desktop scanners to scan casts trimmed for improved finish line visibility, while Group IS used intraoral scans. The method from Dentbird was compared using 3 software packages from 3Shape, exocad, and MEDIT. The Hausdorff and Chamfer distances were used in this study. Three dental laboratory technicians experienced in the digital workflow evaluated clinical finish line acceptance and its Hausdorff and Chamfer distances. For statistical analysis, t tests were performed after the outliers had been removed using the Tukey interquartile range method (α=.05). RESULTS: Outliers identified by using the Tukey interquartile range method were more numerous in the semiautomatic methods than in the automatic methods. When considering data without outliers, the software performance was found to be similar for desktop scans of the trimmed casts. However, the method from Dentbird demonstrated statistically better results (P<.05) for the posterior tooth with finish lines in concave regions than the 3Shape, exocad, and MEDIT software programs. Furthermore, thresholds coherent with clinical acceptance were determined for the Hausdorff and Chamfer distances. The Hausdorff distance threshold was 0.366 mm for desktop scans and 0.566 mm for intraoral scans. For the Chamfer distance, the threshold was 0.026 for desktop scans and 0.100 for intraoral scans. CONCLUSIONS: The method from Dentbird demonstrated a comparable or better performance than the other software solutions, particularly excelling in finish line extraction for intraoral scans. Using a hybrid method combining deep learning and computer-aided design approaches enables the robust and accurate extraction of finish lines.

7.
Int J Oral Maxillofac Implants ; 38(5): 1014-1024, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37847843

RESUMEN

PURPOSE: To compare the fit of 3D-printed titanium (Ti) and cobalt-chromium (Co-Cr) abutments with implants to computer numerical control (CNC)-milled, ready-made abutment-implant assemblies. Their clinical applicability was also evaluated by measuring removal torque values (RTVs) and percentage torque loss of abutment screws. MATERIALS AND METHODS: A total of 138 abutments were included in the study: 92 abutments were fabricated with Ti and Co-Cr alloys using computer-assisted design (CAD) through selective laser melting, and 46 ready-made abutments were prepared. The fit of interfaces between 90 abutments from the three groups (30 ready-made, 30 3D-printed Ti, and 30 3D-printed Co-Cr abutments) and implant assemblies was demonstrated by scanning electron microscopy (SEM) and confocal scanning laser microscopy (CSLM). After 30-Ncm torque tightening of Ti abutment screws twice within 10 minutes, the RTVs and percentage torque loss of screws of 48 abutments (16 ready-made, 16 3D-printed Ti, and 16 3D-printed Co-Cr) were evaluated after 10 minutes of thermocycling and cyclic loading. RESULTS: The fits of 3D-printed Co-Cr abutments were not statistically different from those of ready-made abutments (P = .383), while the fit of 3D-printed Ti abutments was inadequate (P < .001). The RTVs of 3D-printed abutments after cyclic loading were significantly decreased compared with those of CNC-milled abutments (P < .001). CONCLUSION: The fit of interfaces between 3D-printed Co-Cr abutments and implants was adequate. The RTVs of 3D-printed Co-Cr abutments were not significantly different from those of CNC-milled abutments after 10 minutes of 30-Ncm torque tightening and thermocycling.


Asunto(s)
Aleaciones de Cromo , Pilares Dentales , Implantes Dentales , Titanio , Cobalto , Diseño de Implante Dental-Pilar , Análisis del Estrés Dental , Ensayo de Materiales , Impresión Tridimensional , Torque
8.
Sci Adv ; 9(39): eadh4094, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37774021

RESUMEN

Autophagy induction involves extensive molecular and membrane reorganization. Despite substantial progress, the mechanism underlying autophagy initiation remains poorly understood. Here, we used quantitative photoactivated localization microscopy with single-molecule sensitivity to analyze the nanoscopic distribution of endogenous ULK1, the kinase that triggers autophagy. Under amino acid starvation, ULK1 formed large clusters containing up to 161 molecules at the endoplasmic reticulum. Cross-correlation analysis revealed that ULK1 clusters engaging in autophagosome formation require 30 or more molecules. The ULK1 structures with more than the threshold number contained varying levels of Atg13, Atg14, Atg16, LC3B, GEC1, and WIPI2. We found that ULK1 activity is dispensable for the initial clustering of ULK1, but necessary for the subsequent expansion of the clusters, which involves interaction with Atg14, Atg16, and LC3B and relies on Vps34 activity. This quantitative analysis at the single-molecule level has provided unprecedented insights into the behavior of ULK1 during autophagy initiation.


Asunto(s)
Autofagia , Aminoácidos/deficiencia , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Humanos
9.
Autophagy ; : 1-3, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37339275

RESUMEN

In glucose-starved cells, macroautophagy (hereafter referred to as autophagy) is considered to serve as an energy-generating process contributing to cell survival. AMPK (adenosine monophosphate-activated protein kinase) is the primary cellular energy sensor that is activated during glucose starvation. According to the current paradigm in the field, AMPK promotes autophagy in response to energy deprivation by binding and phosphorylating ULK1 (UNC-51 like kinase 1), the protein kinase responsible for autophagy initiation. However, conflicting findings have been reported casting doubts about the current established model. In our recent study, we have thoroughly reevaluated the role of AMPK in autophagy. Contrary to the current paradigm, our study revealed that AMPK functions as a negative regulator of ULK1 activity. The study has elucidated the underlying mechanism and demonstrated the significance of the negative role in controlling autophagy and maintaining cellular resilience during energy depletion.Abbreviations: AMPK: adenosine monophosphate-activated protein kinase; ULK1: UNC-51 like kinase 1; MTORC1: mechanistic target of rapamycin complex 1; ATG14: autophagy-related protein 14; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; ATP: adenosine triphosphate; VPS34: vacuolar protein sorting 34; BECN1: Beclin 1; AMPKα: AMPK catalytic subunit α; LKB1: liver kinase B1; PIK3R4: phosphatidylinositol 3-kinase regulatory subunit 4.

10.
J Adv Prosthodont ; 15(2): 63-71, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37153008

RESUMEN

PURPOSE: The aim of this study was to assess the effect of hemispherical dimple structures on the retention of cobalt-chromium (Co-Cr) crowns cemented to titanium abutments, with different heights and numbers of dimples on the axial walls. MATERIALS AND METHODS: 3.0-mm and 6.0-mm abutments (N = 180) and Co-Cr crowns were prepared. The experimental groups were divided into two and four dimple groups. The crowns were cemented by TempBond and PANAVIA F 2.0 cements. The retention forces were measured after thermal treatments. A two-way Analysis of Variance (ANOVA) and post-hoc Tukey HSD test were conducted to analyze change in retention forces by use of dimples between groups, as well as t test for the effect of abutment height change (α = .05). RESULTS: Results of the two-way ANOVA showed a statistically significant difference in retention force due to the use of dimples, regardless of the types of cements used (P < .001). A significantly higher mean retention forces were observed in the groups with dimples than in the control group, using the post hoc Tukey HSD test (P < .001). Results of t test displayed a statistically significant increase in the retention force with 6.0-mm abutments compared with 3.0-mm abutments (P < .001). The groups without dimples revealed adhesive failure of cements, while the groups with dimples showed mixed failure of cements. CONCLUSION: Use of hemispherical dimples was effective for increasing retention forces of cemented crowns.

11.
Nat Commun ; 14(1): 2994, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37225695

RESUMEN

Autophagy maintains cellular homeostasis during low energy states. According to the current understanding, glucose-depleted cells induce autophagy through AMPK, the primary energy-sensing kinase, to acquire energy for survival. However, contrary to the prevailing concept, our study demonstrates that AMPK inhibits ULK1, the kinase responsible for autophagy initiation, thereby suppressing autophagy. We found that glucose starvation suppresses amino acid starvation-induced stimulation of ULK1-Atg14-Vps34 signaling via AMPK activation. During an energy crisis caused by mitochondrial dysfunction, the LKB1-AMPK axis inhibits ULK1 activation and autophagy induction, even under amino acid starvation. Despite its inhibitory effect, AMPK protects the ULK1-associated autophagy machinery from caspase-mediated degradation during energy deficiency, preserving the cellular ability to initiate autophagy and restore homeostasis once the stress subsides. Our findings reveal that dual functions of AMPK, restraining abrupt induction of autophagy upon energy shortage while preserving essential autophagy components, are crucial to maintain cellular homeostasis and survival during energy stress.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Autofagia , Humanos , Aminoácidos , Caspasas , Glucosa , Células Cultivadas
12.
Sensors (Basel) ; 23(5)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36904653

RESUMEN

In this paper, we investigate a motion-tracking system for robotic computer-assisted implant surgery. Failure of the accurate implant positioning may result in significant problems, thus an accurate real-time motion-tracking system is crucial for avoiding these issues in computer-assisted implant surgery. Essential features of the motion-tracking system are analyzed and classified into four categories: workspace, sampling rate, accuracy, and back-drivability. Based on this analysis, requirements for each category have been derived to ensure that the motion-tracking system meets the desired performance criteria. A novel 6-DOF motion-tracking system is proposed which demonstrates high accuracy and back-drivability, making it suitable for use in computer-assisted implant surgery. The results of the experiments confirm the effectiveness of the proposed system in achieving the essential features required for a motion-tracking system in robotic computer-assisted implant surgery.


Asunto(s)
Procedimientos Quirúrgicos Robotizados , Robótica , Cirugía Asistida por Computador , Procedimientos Quirúrgicos Robotizados/métodos , Robótica/métodos , Cirugía Asistida por Computador/métodos , Movimiento (Física) , Computadores
13.
J Oral Implantol ; 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36796059

RESUMEN

Polycaprolactone has exhibited expediency as a biomaterial for bone regenerative procedures preclinically. The present report of the two clinical cases in the posterior maxilla is the first to describe clinical application of a customized 3D printed polycaprolactone mesh for alveolar ridge augmentation. Two patients needing extensive ridge augmentation procedures for dental implant therapy were selected. Polycaprolactone meshes were virtually designed, 3D printed and applied in combination with a xenogeneic bone substitute. Cone-beam computed tomography was taken pre-operatively, immediately after the surgery, and 1.5 to 2 years after the delivery of implant prostheses. The serial cone-beam computed tomography images were superimposed to measure the augmented height and width at 1 mm increments from the implant platform to 3 mm apically. After 2 years, the mean [maximum, minimum] bone gain was 6.05 [8.64, 2.85] mm vertically and 7.77 [10.03, 6.18] mm horizontally at 1 mm below the implant platform. From immediately postoperative to 2 years, there was 14 % reduction of augmented ridged height and 24 % reduction of augmented width at 1 mm below the platform. All implants placed in augmented sites were successfully maintained until 2 years. The customized Polycaprolactone mesh might be a viable material for ridge augmentation in the atrophic posterior maxilla. This needs to be confirmed through randomized controlled clinical trials in future studies.

14.
J Prosthet Dent ; 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36635136

RESUMEN

STATEMENT OF PROBLEM: Three-dimensional (3D) printers should be capable of fabricating products with high accuracy for potential use in a wide range of dental applications. The trueness and surface characteristics of 3D-printed casts made with different technologies remain unclear. PURPOSE: The purpose of this in vitro study was to evaluate the trueness and surface characteristics of 4 types of dental casts printed using 6 different 3D printers. MATERIAL AND METHODS: Four dental casts prepared for intracoronal and extracoronal restorations were printed using 6 different 3D printers-2 printers of each printing technology (FDM: Creator, Lugo; DLP: D2, ND5100; SLA: Form 2, Form 3). The printed casts were scanned to obtain standard tessellation language (STL) data sets that were superimposed onto the reference to evaluate their trueness (n=15). Trueness was measured based on overall deviations for each cast and for sectional deviations within the cavities. For qualitative evaluation, the surface characteristics of the 3D-printed casts were analyzed by using a digital camera, stereomicroscope, and scanning electron microscope. Statistical analyses were conducted using the Kruskal-Wallis test, followed by multiple Mann-Whitney U tests for pairwise comparisons among groups (α=.05). RESULTS: The overall median trueness values were lowest with the Form 3 (27.9 µm), followed by the ND5100 (30.0 µm), Lugo (37.1 µm), D2 (41.4 µm), Form 2 (46.9 µm), and Creator (83.3 µm) (P<.05). Sectional deviations within the cavity were generally greater than overall deviation. Macroscopic and microscopic images showed that the reproduced casts had the smoothest surface with the SLA, followed by the DLP and FDM printers. Horizontal layers were more discernible with the FDM printer. CONCLUSIONS: The trueness of the 3D-printed casts was influenced by the type of tooth preparation and was printer dependent. Among the tested 3D printers, the Form 3 produced the most accurate casts, while the Creator produced the least accurate casts.

15.
J Prosthet Dent ; 129(1): 199-204, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34116841

RESUMEN

STATEMENT OF PROBLEM: Denture tooth displacement may have a significant impact on denture occlusion. This aspect has seldom been investigated, especially for digital denture processing techniques. PURPOSE: The purpose of this clinical study was to evaluate the accuracy of tooth position with milled digital dentures processed without physical casts. MATERIAL AND METHODS: Ten maxillary and 10 mandibular dentures designed from intraoral scans, milled, and processed without physical casts were investigated. The standard tessellation language (STL) files of the digitally designed dentures were compared with the scan of the dentures after processing (milling the denture base, milling teeth in a complete arch, and then bonding teeth into the base). The STL files were superimposed by using a surface-matching software program. After a preliminary alignment, the STL meshes were trimmed and reoriented; then, the final alignment was carried out by using the cameo surface. Six reference points (the mesiobuccal cusp on the most distal molar, the canine cusp, the middle of the incisal edge of the central incisor on both the left and the right side) were selected to measure tooth displacements along the X-, Y-, and Z-axes, corresponding (from the preliminary reorientation) to anteroposterior, mediolateral, and occlusal displacement, respectively. Tooth position accuracy was assessed by using median and interquartile range values. Univariate and multivariate statistical analyses were used to investigate the significance of the extent of displacements, as well as differences among displacement directions, reference teeth, side, and denture arch type (α=.05). RESULTS: Only the median (0.2 mm; interquartile range: 0.27 mm) occlusal displacement was significantly different from zero. A generalized estimated equation model addressing occlusal displacement as a dependent variable showed no significant effect of tooth type, side, or denture arch type, either alone or in combination. CONCLUSIONS: The tooth position of both maxillary and mandibular milled digital dentures processed without physical casts was accurate in the anteroposterior and mediolateral directions. Occlusal displacement seemed to be within the range of clinical acceptability; its consistency throughout the arch allowed optimization or compensation at the design or manufacturing step.


Asunto(s)
Maloclusión , Anomalías Dentarias , Humanos , Maxilar , Programas Informáticos , Mandíbula , Diseño Asistido por Computadora , Dentaduras
16.
J Prosthodont Res ; 67(1): 138-143, 2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-35569999

RESUMEN

PURPOSE: This study aimed to investigate the accuracy of automatic tooth finish line registration compared to manual registration with regard to various finish line configurations and dental computer-aided design (CAD) software. METHODS: Finish line registrations were performed on 15 digital tooth models with different finish line configurations (edge roundness radius = 0 mm, 0.2 mm, and 0.4 mm; edge angle = 30°, 60°, 90°, 120°, and 150°) using automatic and manual methods for designing virtual copings (N = 150). The discrepancies between the registered finish line extracted from the copings and the actual finish line segmented from the digitized tooth model were measured. Three-way analysis of variance (ANOVA) and post-hoc analyses with Bonferroni correction (α = 0.05) were used to analyze the results. RESULTS: The finish line configurations, registration methods, and CAD software interacted with the accuracy of the registered finish line (p = 0.001). The automatic finish line registration method exhibited larger error values than the manual method, especially at high finish line edge roundness and obtuse edge angles for both EXOCAD and R2CAD software (p < 0.001). The difference in dental CAD software affected the registration accuracy in the automatic method (p < 0.001), but not in the manual method (p = 0.676). CONCLUSIONS: Finish line registration errors may occur when the automatic registration method is applied to the indistinct edge of tooth preparation. The accuracy of the automatic finish line registration could differ according to the CAD software program.


Asunto(s)
Coronas , Preparación Protodóncica del Diente , Preparación Protodóncica del Diente/métodos , Reproducibilidad de los Resultados , Diseño de Prótesis Dental , Preparación del Diente , Computadores , Programas Informáticos , Diseño Asistido por Computadora , Adaptación Marginal Dental
17.
J Prosthet Dent ; 129(1): 69-75, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35985854

RESUMEN

STATEMENT OF PROBLEM: Despite the introduction of intraoral scanners (IOSs) with dual camera triangulation, only a few comparative clinical studies have evaluated their clinical performances in the digital workflow for cast-free restorations. PURPOSE: The purpose of this clinical trial was to assess the clinical efficacy of 2 different technology-based IOSs by evaluating the marginal and internal gaps of cast-free monolithic zirconia crowns fabricated by using a fully digital workflow. MATERIAL AND METHODS: A prospective randomized clinical trial was conducted in 35 participants requiring a single-unit restoration. One crown was fabricated from the scan data obtained with a confocal microscopy-based IOS (Group T), while the other was made with the scan data obtained from an IOS using dual camera triangulation (Group I). A replica technique was used to assess the marginal and internal gaps. The buccolingual and mesiodistal cross-sections were measured, and noninferiority trials were performed. RESULTS: A total of 39 teeth from 35 participants were restored with a single-unit crown. The marginal and axial wall gaps of the crowns in Group I was not inferior to that of the crowns in Group T (upper limit confidence interval [CI] <30). In contrast, the gap of the crowns at the line angle in Group T was inferior to that of the crowns in Group I (lower limit CI <-30). From an occlusal space perspective, the gap of the crowns in Group I was inferior to that of the crowns in Group T (upper limit CI >30). Twenty-five crowns were selected from Group I, and 14 crowns were selected from Group T for definitive placement. CONCLUSIONS: The marginal gap of the crown fabricated by using the scan data obtained from the dual camera triangulation-based IOS was noninferior to that obtained from the confocal microscopy-based IOS and was within the clinically applicable limit.


Asunto(s)
Diseño Asistido por Computadora , Diseño de Prótesis Dental , Humanos , Estudios Prospectivos , Adaptación Marginal Dental , Técnica de Impresión Dental , Coronas
18.
J Adv Prosthodont ; 15(6): 281-289, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38205124

RESUMEN

PURPOSE: This study aimed to predict the positional coordinates of incisor points from the scan data of conventional complete dentures and verify their accuracy. MATERIALS AND METHODS: The standard triangulated language (STL) data of the scanned 100 pairs of complete upper and lower dentures were imported into the computer-aided design software from which the position coordinates of the points corresponding to each landmark of the jaw were obtained. The x, y, and z coordinates of the incisor point (XP, YP, and ZP) were obtained from the maxillary and mandibular landmark coordinates using regression or calculation formulas, and the accuracy was verified to determine the deviation between the measured and predicted coordinate values. YP was obtained in two ways using the hamular-incisive-papilla plane (HIP) and facial measurements. Multiple regression analysis was used to predict ZP. The root mean squared error (RMSE) values were used to verify the accuracy of the XP and YP. The RMSE value was obtained after cross-validation using the remaining 30 cases of denture STL data to verify the accuracy of ZP. RESULTS: The RMSE was 2.22 for predicting XP. When predicting YP, the RMSE of the method using the HIP plane and facial measurements was 3.18 and 0.73, respectively. Cross-validation revealed the RMSE to be 1.53. CONCLUSION: YP and ZP could be predicted from anatomical landmarks of the maxillary and mandibular edentulous jaw, suggesting that YP could be predicted with better accuracy with the addition of the position of the lower border of the upper lip.

19.
J Adv Prosthodont ; 14(4): 250-261, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36105878

RESUMEN

PURPOSE: The purpose of this study was to analyze the marginal fit of three-unit resin prostheses printed with the stereolithography (SLA) method in two build orientations (45°, 60°) and two layer thicknesses (50 µm, 100 µm). MATERIALS AND METHODS: A master model for a three-unit resin prosthesis was designed with two implant abutments. Forty specimens were printed using an SLA 3D printer. The specimens were printed with two build orientations (45°, 60°), and each orientation was printed with two layer thicknesses (50 µm, 100 µm). The marginal fit was measured as the marginal gap (MG) and absolute marginal discrepancy (AMD), and MG and AMD measurements were performed at 8 points per abutment, for 16 points per specimen. All statistical analyses were performed using SPSS software. Two-way analysis of variance (ANOVA) was separately performed on the MG and AMD values of the build orientations and layer thicknesses. Moreover, one-way ANOVA was performed for each point within each group. RESULTS: The margins of the area adjacent to the pontic showed significantly high values, and the values were smaller when the build orientation was 45° than when it was 60°. However, the margin did not differ significantly according to the layer thicknesses. CONCLUSION: The marginal fit of the three-unit resin prosthesis fabricated by the SLA 3D method was affected by the pontic. Moreover, the marginal fit was affected by the build orientation. The 45° build orientation is recommended.

20.
Artículo en Inglés | MEDLINE | ID: mdl-35886391

RESUMEN

Complete dentures fabricated with the additive or subtractive method have been widely used and proven to be clinically acceptable. However, fabrication of removable partial dentures (RPDs) using computer-aided design and computer-aided manufacturing is limited by its technique sensitivity as the pink resin, which encases part of metal framework, cannot be fabricated digitally. This article introduces a digital workflow to fabricate an RPD with the subtractive method. A complex structure of the offset metal framework and denture base with teeth sockets was milled with this technique. Artificial teeth were milled with a resin disk according to the computer-aided design data, resulting in the customized occlusal surface. This digital technique can be an alternative to the analog fabrication method as the RPD was fabricated digitally, keeping the original structures and reducing resin shrinkage on the intaglio surface.


Asunto(s)
Dentadura Parcial Removible , Diseño Asistido por Computadora , Dentadura Completa , Flujo de Trabajo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...