Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(48): 55692-55702, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37981729

RESUMEN

Aqueous zinc-vanadium hybrid redox flow battery systems are an efficient strategy to address the problems of low voltage and high cost of conventional all-vanadium redox flow batteries. However, the low electrochemical activity of carbon-based electrodes toward a vanadium redox reaction limits the performance of redox flow batteries. In this study, polyhedral binary cerium titanium oxide (Ce2/3TiO3, CTO) is synthesized using molten salt synthesis. CTO is fabricated by adjusting the temperature and composition. Notably, the prepared CTO obtained at 1000 °C shows the highest catalytic activity for a VO2+/VO2+ redox reaction. Further, CTO is prepared as a composite electrocatalyst and applied to a high-voltage aqueous zinc-vanadium redox flow battery. The cell adopts an alkali zinc electrolyte containing a Zn/[Zn(OH)4]2- redox pair and exhibits a high operating voltage of 2.26 V. Remarkably, a zinc-vanadium redox flow battery using the composite electrocatalyst exhibits a high energy density of 42.68 Wh L-1 at 20 mA cm-2 and an initial voltage efficiency of 90.3%. The excellent cell performance is attributed to structural defects caused by A-site deficiency in the perovskite oxide structure as well as oxygen vacancies resulting from the low valence state of the metal ion, which enhance the catalytic activity of the vanadium ions.

2.
ACS Appl Mater Interfaces ; 15(31): 37390-37400, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37498204

RESUMEN

Various redox couples have been reported to increase the energy density and reduce the price of redox flow batteries (RFBs). Among them, the vanadium electrolyte is mainly used due to its high solubility, but electrode modification is still necessary due to its low reversibility and sluggish kinetics. Also, an incompatible ion exchange membrane with redox-active species leads to self-discharge referred to as crossover. Here, we report a V/Mn RFB using an anion exchange membrane (AEM) for crossover mitigation and etched carbon felt by nickel-bismuth (NB-ECF) for the vanadium anolyte. The NB-ECF significantly enhances the reversibility and kinetics of the V2+/V3+ redox reaction, attributed to inhibited irreversible hydrogen evolution by the Bi catalyst and increased carboxyl groups by nickel (etching and NiO catalyst). Notably, the V/Mn cell employed in the NB-ECF maintains a high energy efficiency of 85.7% during 50 cycles without capacity degradation at a current density of 20 mA cm-2, which is attributed to a synergistic effect of crossover mitigation and facilitated V2+/V3+ redox reaction. This study demonstrates the novel electrocatalyst design of carbon felt using two metal species.

3.
ACS Appl Mater Interfaces ; 15(5): 7002-7013, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36710651

RESUMEN

Aqueous zinc-based redox flow batteries are promising large-scale energy storage applications due to their low cost, high safety, and environmental friendliness. However, the zinc dendritic growth has depressed the cycle performance, stability, and efficiency, hindering the commercialization of the zinc-based redox flow batteries. We fabricate the carbon felt modified with bimodal sized tin and copper clusters (SCCF) with the electrometallic synthesis in a continuous-flow cell. The SCCF electrode provides a larger zinc nucleation area and lower overpotential than pristine carbon felt, which is ascribed to the well-controlled interfacial interaction of bimodal tin and copper particle clusters by suppressing unwanted alloy formation. The zinc symmetric flow battery and the zinc-based hybrid redox flow battery show the improved zinc plating and stripping efficiency. The SCCF electrode exhibits 75% improved cycling stability compared to the pristine carbon felt electrode in the zinc symmetric flow battery. Notably, the high-voltage aqueous zinc-vanadium redox flow battery demonstrates a high average cell voltage of 2.31 V at 40 mA cm-2, showing a Coulombic efficiency of 99.9% and an energy efficiency of 87.6% for 100 cycles. We introduce a facile strategy to suppress the zinc dendritic growth, enhancing the performance of the zinc-based redox flow batteries.

4.
Chem Asian J ; 18(2): e202201052, 2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36479849

RESUMEN

The energy density of redox flow batteries (RFBs) is generally affected by the standard electrode potential and the solubility of the redox active species. These crucial factors are closely related to the solvent in which the active materials are dissolved. Aqueous RFBs have been widely studied due to their excellent reaction kinetics and high solubility of the redox couple in aqueous media. However, the low voltage of conventional aqueous RFBs has hindered them from being candidates for practical applications. Recently, high-voltage aqueous RFBs are implemented based on the low negative potential of the Zn/[Zn(OH)4 ]2- reaction in an alkaline solution. Here, we review recent progress in the design of high energy density RFBs in both aqueous and non-aqueous electrolytes, notably focusing on the Zn/MnO2 hybrid RFBs in detail. Furthermore, strategies for inhibiting zinc dendritic growth and stabilizing manganese redox couple in the RFBs system are discussed.

5.
Chem Sci ; 13(21): 6159-6180, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35733905

RESUMEN

Zinc-air batteries (ZABs) have been considered as a next-generation battery system with high energy density and abundant resources. However, the sluggish multi-step reaction of the oxygen is the main obstacle for the practical application of ZABs. Therefore, bifunctional electrocatalysts with high stability and activity for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are greatly required to promote the catalytic reaction. In this review, we first explain the reaction mechanism of the ZABs, mainly focusing on multiple oxygen intermediates. Then, the latest studies on bifunctional electrocatalysts for the air cathodes and their progress of the ZABs are discussed with following aspects: platinum group metal, metal-free, transition metal, and metal compound-derived electrocatalysts. Finally, we highlight the advanced ZAB systems with the design of the full-temperature range operation, the all-solid-state, and the newly reported non-alkaline electrolyte, summarizing the remaining challenges and requirements of the future research directions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...