Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
1.
Biomedicines ; 11(3)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36979816

RESUMEN

Glutathione S-transferase pi (GSTpi) is a member of the GST family and plays many critical roles in cellular processes, including anti-oxidative and signal transduction. However, the role of anti-oxidant enzyme GSTpi against dopaminergic neuronal cell death has not been fully investigated. In the present study, we investigated the roles of cell permeable Tat-GSTpi fusion protein in a SH-SY5Y cell and a Parkinson's disease (PD) mouse model. In the 1-methyl-4-phenylpyridinium (MPP+)-exposed cells, Tat-GSTpi protein decreased DNA damage and reactive oxygen species (ROS) generation. Furthermore, this fusion protein increased cell viability by regulating MAPKs, Bcl-2, and Bax signaling. In addition, Tat-GSTpi protein delivered into the substantia nigra (SN) of mice brains protected dopaminergic neuronal cell death in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD animal model. Our results indicate that the Tat-GSTpi protein inhibited cell death from MPP+- and MPTP-induced damage, suggesting that it plays a protective role during the loss of dopaminergic neurons in PD and that it could help to identify the mechanism responsible for neurodegenerative diseases, including PD.

2.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36769090

RESUMEN

Glutathione S-transferase alpha 2 (GSTA2), a member of the glutathione S-transferase family, plays the role of cellular detoxification against oxidative stress. Although oxidative stress is related to ischemic injury, the role of GSTA2 against ischemia has not been elucidated. Thus, we studied whether GSTA2 prevents ischemic injury by using the PEP-1-GSTA2 protein which has a cell-permeable protein transduction domain. We revealed that cell-permeable PEP-1-GSTA2 transduced into HT-22 cells and markedly protected cell death via the inhibition of reactive oxygen species (ROS) production and DNA damage induced by oxidative stress. Additionally, transduced PEP-1-GSTA2 promoted mitogen-activated protein kinase (MAPK), and nuclear factor-kappaB (NF-κB) activation. Furthermore, PEP-1-GSTA2 regulated Bcl-2, Bax, cleaved Caspase-3 and -9 expression protein levels. An in vivo ischemic animal model, PEP-1-GSTA2, markedly prevented the loss of hippocampal neurons and reduced the activation of microglia and astrocytes. These findings indicate that PEP-1-GSTA2 suppresses hippocampal cell death by regulating the MAPK and apoptotic signaling pathways. Therefore, we suggest that PEP-1-GSTA2 will help to develop the therapies for oxidative-stress-induced ischemic injury.


Asunto(s)
Hipocampo , Estrés Oxidativo , Animales , Apoptosis , Hipocampo/metabolismo , Isquemia/metabolismo , Neuronas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Glutatión Transferasa/metabolismo
3.
FEBS J ; 290(11): 2923-2938, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36688733

RESUMEN

It is well known that oxidative stress is highly associated with Parkinson's disease (PD), and biliverdin reductase A (BLVRA) is known to have antioxidant properties against oxidative stress. In this study, we developed a novel N-acetylgalactosamine kinase (GK2) protein transduction domain (PTD) derived from adenosine A2A and fused with BLVRA to determine whether the GK2-BLVRA fusion protein could protect dopaminergic neuronal cells (SH-SY5Y) from oxidative stress in vitro and in vivo using a PD animal model. GK2-BLVRA was transduced into various cells, including SH-SY5Y cells, without cytotoxic effects, and this fusion protein protected SH-SY5Y cells and reduced reactive oxygen species production and DNA damage after 1-methyl-4-phenylpyridinium (MPP+ ) exposure. GK2-BLVRA suppressed mitogen-activated protein kinase (MAPK) activation and modulated apoptosis-related protein (Bcl-2, Bax, cleaved Caspase-3 and -9) expression levels. In the PD animal model, GK2-BLVRA transduced into the substantia nigra crossed the blood-brain barrier and markedly reduced dopaminergic neuronal cell death in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced animals. These results indicate that our novel PTD GK-2 is useful for the transduction of protein, and GK2-BLVRA exhibits a beneficial effect against dopaminergic neuronal cell death in vitro and in vivo, suggesting that BLVRA can be used as a therapeutic agent for PD.


Asunto(s)
Neuroblastoma , Fármacos Neuroprotectores , Enfermedad de Parkinson , Animales , Humanos , Ratones , Línea Celular Tumoral , Neuroblastoma/tratamiento farmacológico , Estrés Oxidativo , Apoptosis , Muerte Celular , Enfermedad de Parkinson/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
4.
Exp Ther Med ; 22(6): 1395, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34650643

RESUMEN

Thioredoxin 1 (Trx1) serves a central role in redox homeostasis. It is involved in numerous other processes, including oxidative stress and apoptosis. However, to the best of our knowledge, the role of Trx1 in inflammation remains to be explored. The present study investigated the function and mechanism of cell permeable fused Tat-Trx1 protein in macrophages and a mouse model. Transduction levels of Tat-Trx1 were determined via western blotting. Cellular distribution of transduced Tat-Trx1 was determined by fluorescence microscopy. 2',7'-Dichlorofluorescein diacetate and TUNEL staining were performed to determine the production of reactive oxygen species and DNA fragmentation. Protein and gene expression were measured by western blotting and reverse transcription-quantitative PCR (RT-qPCR), respectively. Effects of skin inflammation were determined using hematoxylin and eosin staining, changes in ear weight and ear thickness, and RT-qPCR in ear edema animal models. Transduced Tat-Trx1 inhibited lipopolysaccharide-induced cytotoxicity and activation of NF-κB, MAPK and Akt. Additionally, Tat-Trx1 markedly reduced the production of inducible nitric oxide synthase, cyclooxygenase-2, IL-1ß, IL-6 and TNF-α in macrophages. In a 12-O-tetradecanoylphorbol-13-acetate-induced mouse model, Tat-Trx1 reduced inflammatory damage by inhibiting inflammatory mediator and cytokine production. Collectively, these results demonstrated that Tat-Trx1 could exert anti-inflammatory effects by inhibiting the production of pro-inflammatory mediators and cytokines and by modulating MAPK signaling. Therefore, Tat-Trx1 may be a useful therapeutic agent for diseases induced by inflammatory damage.

5.
Molecules ; 26(11)2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34206041

RESUMEN

Parkinson's disease (PD) is characterized mainly by the loss of dopaminergic neurons in the substantia nigra (SN) mediated via oxidative stress. Although glutaredoxin-1 (GLRX1) is known as one of the antioxidants involved in cell survival, the effects of GLRX1 on PD are still unclear. In this study, we investigated whether cell-permeable PEP-1-GLRX1 inhibits dopaminergic neuronal cell death induced by 1-methyl-4-phenylpyridinium (MPP+) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). We showed that PEP-1-GLRX1 protects cell death and DNA damage in MPP+-exposed SH-SY5Y cells via the inhibition of MAPK, Akt, and NF-κB activation and the regulation of apoptosis-related protein expression. Furthermore, we found that PEP-1-GLRX1 was delivered to the SN via the blood-brain barrier (BBB) and reduced the loss of dopaminergic neurons in the MPTP-induced PD model. These results indicate that PEP-1-GLRX1 markedly inhibited the loss of dopaminergic neurons in MPP+- and MPTP-induced cytotoxicity, suggesting that this fusion protein may represent a novel therapeutic agent against PD.


Asunto(s)
Cisteamina/análogos & derivados , Neuronas Dopaminérgicas/citología , Glutarredoxinas/administración & dosificación , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Enfermedad de Parkinson/tratamiento farmacológico , Péptidos/química , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/efectos adversos , 1-Metil-4-fenilpiridinio/efectos adversos , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Cisteamina/química , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Glutarredoxinas/química , Glutarredoxinas/farmacología , Humanos , Masculino , Ratones , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/metabolismo , Sustancia Negra/química
6.
Free Radic Biol Med ; 172: 418-429, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34175438

RESUMEN

Proline rich Akt substrate (PRAS40) is a component of mammalian target of rapamycin complex 1 (mTORC1) and activated mTORC1 plays important roles for cellular survival in response to oxidative stress. However, the roles of PRAS40 in dopaminergic neuronal cell death have not yet been examined. Here, we examined the roles of Tat-PRAS40 in MPP+- and MPTP-induced dopaminergic neuronal cell death. Our results showed that Tat-PRAS40 effectively transduced into SH-SY5Y cells and inhibited DNA damage, ROS generation, and apoptotic signaling in MPP+-induced SH-SY5Y cells. Further, these protective mechanisms of Tat-PRAS40 protein display through phosphorylation of Tat-PRAS40, Akt and direct interaction with 14-3-3σ protein, but not via the mTOR-dependent signaling pathway. In a Parkinson's disease animal model, Tat-PRAS40 transduced into dopaminergic neurons in mouse brain and significantly protected against dopaminergic cell death by phosphorylation of Tat-PRAS40, Akt and interaction with 14-3-3σ protein. In this study, we demonstrated for the first time that Tat-PRAS40 directly protects against dopaminergic neuronal cell death. These results indicate that Tat-PRAS40 may provide a useful therapeutic agent against oxidative stress-induced dopaminergic neuronal cell death, which causes diseases such as PD.


Asunto(s)
Neuronas Dopaminérgicas , Estrés Oxidativo , Animales , Apoptosis , Muerte Celular , Ratones , Especies Reactivas de Oxígeno
7.
Biomol Ther (Seoul) ; 29(3): 321-330, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33436533

RESUMEN

Oxidative stress plays a crucial role in the development of neuronal disorders including brain ischemic injury. Thioredoxin 1 (Trx1), a 12 kDa oxidoreductase, has anti-oxidant and anti-apoptotic functions in various cells. It has been highly implicated in brain ischemic injury. However, the protective mechanism of Trx1 against hippocampal neuronal cell death is not identified yet. Using a cell permeable Tat-Trx1 protein, protective mechanism of Trx1 against hydrogen peroxide-induced cell death was examined using HT-22 cells and an ischemic animal model. Transduced Tat-Trx1 markedly inhibited intracellular ROS levels, DNA fragmentation, and cell death in H2O2-treatment HT-22 cells. Tat-Trx1 also significantly inhibited phosphorylation of ASK1 and MAPKs in signaling pathways of HT-22 cells. In addition, Tat-Trx1 regulated expression levels of Akt, NF-κB, and apoptosis related proteins. In an ischemia animal model, Tat-Trx1 markedly protected hippocampal neuronal cell death and reduced astrocytes and microglia activation. These findings indicate that transduced Tat-Trx1 might be a potential therapeutic agent for treating ischemic injury.

8.
Int J Mol Med ; 47(2): 751-760, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33416093

RESUMEN

Aldose reductase (AR) is known to detoxify aldehydes and prevent oxidative stress. Although AR exerts antioxidant effects, the role of AR in Parkinson's disease (PD) remains unclear. The objective of the present study was to investigate the protective effects of AR protein against 1­methyl­4­phenylpyridinium (MPP+)­induced SH­SY5Y cell death and 1­methyl­4­phenyl­1,2,3,6­tetrahydropyridine (MPTP)­induced PD in a mouse model using the cell permeable Tat­AR fusion protein. The results revealed that when Tat­AR protein was transduced into SH­SY5Y cells, it markedly protected the cells against MPP+­induced death and DNA fragmentation. It also reduced the activation of mitogen-activated protein kinase (MAPKs) and regulated the expression levels of Bcl­2, Bax and caspase­3. Immunohistochemical analysis revealed that when Tat­AR protein was transduced into the substantia nigra (SN) of mice with PD, it markedly inhibited dopaminergic neuronal cell death. Therefore, Tat­AR may be useful as a therapeutic protein for PD.


Asunto(s)
Aldehído Reductasa/metabolismo , Neuronas Dopaminérgicas/enzimología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Sistema de Señalización de MAP Quinasas , Estrés Oxidativo , Sustancia Negra/enzimología , Aldehído Reductasa/genética , Animales , Muerte Celular , Línea Celular Tumoral , Activación Enzimática , Quinasas MAP Reguladas por Señal Extracelular/genética , Humanos , Intoxicación por MPTP/enzimología , Intoxicación por MPTP/genética , Masculino , Ratones
9.
BMB Rep ; 53(11): 582-587, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32684242

RESUMEN

It is well known that oxidative stress participates in neuronal cell death caused production of reactive oxygen species (ROS). The increased ROS is a major contributor to the development of ischemic injury. Indoleamine 2,3-dioxygenase 1 (IDO-1) is involved in the kynurenine pathway in tryptophan metabolism and plays a role as an anti-oxidant. However, whether IDO-1 would inhibit hippocampal cell death is poorly known. Therefore, we explored the effects of cell permeable Tat-IDO-1 protein against oxidative stress-induced HT-22 cells and in a cerebral ischemia/reperfusion injury model. Transduced Tat-IDO-1 reduced cell death, ROS production, and DNA fragmentation and inhibited mitogen-activated protein kinases (MAPKs) activation in H2O2 exposed HT-22 cells. In the cerebral ischemia/ reperfusion injury model, Tat-IDO-1 transduced into the brain and passing by means of the blood-brain barrier (BBB) significantly prevented hippocampal neuronal cell death. These results suggest that Tat-IDO-1 may present an alternative strategy to improve from the ischemic injury. [BMB Reports 2020; 53(11): 582-587].


Asunto(s)
Isquemia Encefálica/fisiopatología , Indolamina-Pirrol 2,3,-Dioxigenasa/farmacología , Daño por Reperfusión/terapia , Animales , Apoptosis/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Gerbillinae , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Isquemia/metabolismo , Masculino , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/metabolismo
10.
Arthritis Res Ther ; 22(1): 176, 2020 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-32711562

RESUMEN

OBJECTIVES: Histone deacetylase (HDAC) 6 promotes inflammation. We investigated the anti-arthritic effects of CKD-506, a novel HDAC6 inhibitor, in vitro and in a murine model of arthritis as a novel treatment option for rheumatoid arthritis (RA). METHODS: HDAC6 was overexpressed in mouse peritoneal macrophages and RAW 264.7 cells, and the effects of a HDAC6 inhibitor CKD-506 on cytokine production and activity of NF-κB and AP-1 signaling were examined. Peripheral blood mononuclear cells (PBMCs) from RA patients and fibroblast-like synoviocytes (FLS) were activated in the presence of CKD-506. Next, regulatory T cells (Tregs) were induced from RA patients and co-cultured with healthy effector T cells (Teffs) and cell proliferation was analyzed by flow cytometry. Finally, the effects of the inhibitor on the severity of arthritis were assessed in a murine model of adjuvant-induced arthritis (AIA). RESULTS: Overexpression of HDAC6 induced macrophages to produce TNF-α and IL-6. The inhibitory effect of CKD-506 was mediated via blockade of NF-κB and AP-1 activation. HDAC6 inhibition reduced TNF-α and IL-6 production by activated RA PBMCs. CKD-506 inhibited production of MMP-1, MMP-3, IL-6, and IL-8 by activated FLS. In addition, CKD-506 inhibited proliferation of Teffs directly and indirectly by improving iTreg function. In AIA rats, oral CKD-506 improved clinical arthritis in a dose-dependent manner. A combination of sub-therapeutic CKD-506 and methotrexate exerted a synergistic effect. CONCLUSION: The novel HDAC6 inhibitor CKD-506 suppresses inflammatory responses by monocytes/macrophages, improves Treg function, and ameliorates arthritis severity in a murine model of RA. Thus, CKD-506 might be a novel and effective treatment option for RA.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Insuficiencia Renal Crónica , Sinoviocitos , Animales , Artritis Experimental/tratamiento farmacológico , Artritis Reumatoide/tratamiento farmacológico , Células Cultivadas , Modelos Animales de Enfermedad , Fibroblastos , Histona Desacetilasa 6 , Humanos , Leucocitos Mononucleares , Ratones , Ratas , Insuficiencia Renal Crónica/tratamiento farmacológico , Membrana Sinovial
11.
Int J Mol Sci ; 21(8)2020 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-32290442

RESUMEN

Reactive oxygen species (ROS) is major risk factor in neuronal diseases including ischemia. Although biliverdin reductase A (BLVRA) plays a pivotal role in cell survival via its antioxidant function, its role in hippocampal neuronal (HT-22) cells and animal ischemic injury is not clearly understood yet. In this study, the effects of transducible fusion protein Tat-BLVRA on H2O2-induced HT-22 cell death and in an animal ischemia model were investigated. Transduced Tat-BLVRA markedly inhibited cell death, DNA fragmentation, and generation of ROS. Transduced Tat-BLVRA inhibited the apoptosis and mitogen activated protein kinase (MAPK) signaling pathway and it passed through the blood-brain barrier (BBB) and significantly prevented hippocampal cell death in an ischemic model. These results suggest that Tat-BLVRA provides a possibility as a therapeutic molecule for ischemia.


Asunto(s)
Apoptosis/efectos de los fármacos , Productos del Gen tat , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Proteínas Recombinantes de Fusión/farmacología , Animales , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/etiología , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Línea Celular , Modelos Animales de Enfermedad , Productos del Gen tat/genética , Gerbillinae , Peróxido de Hidrógeno/metabolismo , Masculino , Fármacos Neuroprotectores/farmacología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Especies Reactivas de Oxígeno/metabolismo , Proteínas Recombinantes de Fusión/genética
12.
BMB Rep ; 53(2): 106-111, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31964467

RESUMEN

Glutaredoxin 1 (GLRX1) has been recognized as an important regulator of redox signaling. Although GLRX1 plays an essential role in cell survival as an antioxidant protein, the function of GLRX1 protein in inflammatory response is still under investigation. Therefore, we wanted to know whether transduced PEP-1-GLRX1 protein inhibits lipopolysaccharide (LPS)- and 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced inflammation. In LPS-exposed Raw 264.7 cells, PEP-1-GLRX1 inhibited cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), activation of mitogen activated protein kinases (MAPKs) and nuclear factor-kappaB (NF-κB) expression levels. In a TPA-induced mouse-ear edema model, topically applied PEP-1-GLRX1 transduced into ear tissues and significantly ameliorated ear edema. Our data reveal that PEP-1-GLRX1 attenuates inflammation in vitro and in vivo, suggesting that PEP-1-GLRX1 may be a potential therapeutic protein for inflammatory diseases. [BMB Reports 2020; 53(2): 106-111].


Asunto(s)
Antiinflamatorios/farmacología , Cisteamina/análogos & derivados , Glutarredoxinas/farmacología , Inflamación/metabolismo , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , FN-kappa B/metabolismo , Péptidos , Animales , Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa 2/farmacología , Edema/inducido químicamente , Edema/metabolismo , Edema/terapia , Lipopolisacáridos/farmacología , Masculino , Ratones , Ratones Endogámicos ICR , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/metabolismo , Fosforilación , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos , Acetato de Tetradecanoilforbol/farmacología
13.
BMB Rep ; 53(4): 223-228, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31964468

RESUMEN

Dysregulation of histone deacetylase 6 (HDAC6) can lead to the pathologic states and result in the development of various diseases including cancers and inflammatory diseases. The objective of this study was to elucidate the regulatory role of microRNA-22 (miR-22) in HDAC6-mediated expression of proinflammatory cytokines in lipopolysaccharide (LPS)-stimulated macrophages. LPS stimulation induced HDAC6 expression, but suppressed miR-22 expression in macrophages, suggesting possible correlation between HDAC6 and miR-22. Luciferase reporter assays revealed that 3'UTR of HDAC6 was a bona fide target site of miR-22. Transfection of miR-22 mimic significantly inhibited LPS-induced HDAC6 expression, while miR-22 inhibitor further increased LPS-induced HDAC6 expression. LPS-induced activation of NF-κB and AP-1 was inhibited by miR-22 mimic, but further increased by miR-22 inhibitor. LPS-induced expression of pro-inflammatory cytokines such as TNF-α, IL-1ß, and IL-6 was inhibited by miR-22 mimic, but further increased by miR-22 inhibitor. Taken together, these data provide evidence that miR-22 can downregulate LPS-induced expression of proinflammatory cytokines via suppression of NF-κB and AP-1 axis by targeting HDAC6 in macrophages. [BMB Reports 2020; 53(4): 223-228].


Asunto(s)
Histona Desacetilasa 6/genética , Histona Desacetilasa 6/metabolismo , MicroARNs/genética , Animales , Citocinas/metabolismo , Inflamación/genética , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , Macrófagos/fisiología , Ratones , MicroARNs/metabolismo , FN-kappa B/metabolismo , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo
14.
Exp Neurobiol ; 28(5): 612-627, 2019 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-31698553

RESUMEN

Aldose reductase (AR) protein, a member of the NADPH-dependent aldo-keto reductase family, reduces a wide range of aldehydes and enhances cell survival by inhibition of oxidative stress. Oxidative stress is known as one of the major pathological factor in ischemia. Since the precise function of AR protein in ischemic injury is fully unclear, we examined the function of AR protein in hippocampal neuronal (HT-22) cells and in an animal model of ischemia in this study. Cell permeable Tat-AR protein was produced by fusion of protein transduction domain in Tat for delivery into the cells. Tat-AR protein transduced into HT-22 cells and significantly inhibited cell death and regulated the mitogen-activate protein kinases (MAPKs), Bcl-2, Bax, and Caspase-3 under oxidative stress condition. In an ischemic animal model, Tat-AR protein transduced into the brain tissues through the blood-brain barrier (BBB) and drastically decreased neuronal cell death in hippocampal CA1 region. These results indicate that transduced Tat-AR protein has protective effects against oxidative stress-induced neuronal cell death in vitro and in vivo, suggesting that Tat-AR protein could be used as potential therapeutic agent in ischemic injury.

15.
Biochimie ; 156: 158-168, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30352250

RESUMEN

Parkinson's disease (PD), a neurodegenerative disorder, is characterized by a loss of dopaminergic neurons in the substantia nigra (SN) of the brain and it is well known that the pathogenesis of PD is related to a number of risk factors including oxidative stress. Antioxidant 1 (ATOX1) protein plays a crucial role in various diseases as an antioxidant and chaperone. In this study, we determined whether Tat-ATOX1 could protect against 1-methyl-4-phenylpyridinium ion (MPP+)-induced SH-SY5Y cell death and in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced animal model of PD. In the MPP+ exposed SH-SY5Y cells, Tat-ATOX1 markedly inhibited cell death and toxicities. In addition, Tat-ATOX1 markedly suppressed the activation of Akt and mitogen activated protein kinases (MAPKs) as well as cleavage of caspase-3 and Bax expression levels. In a MPTP-induced animal model, Tat-ATOX1 transduced into brain and protected dopaminergic neuronal cell loss. Taken together, Tat-ATOX1 inhibits dopaminergic neuronal death through the suppression of MAPKs and apoptotic signal pathways. Thus, Tat-ATOX1 represents a potential therapeutic protein drug candidate for PD.


Asunto(s)
1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Proteínas de Transporte de Catión , Intoxicación por MPTP/prevención & control , Metalochaperonas , Chaperonas Moleculares , Proteínas Recombinantes de Fusión , Animales , Proteínas de Transporte de Catión/biosíntesis , Proteínas de Transporte de Catión/genética , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Proteínas Transportadoras de Cobre , Humanos , Intoxicación por MPTP/metabolismo , Intoxicación por MPTP/patología , Masculino , Metalochaperonas/biosíntesis , Metalochaperonas/genética , Ratones , Chaperonas Moleculares/biosíntesis , Chaperonas Moleculares/genética , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Transducción Genética
16.
BMB Rep ; 51(12): 654-659, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30545441

RESUMEN

Antioxidant 1 (ATOX1) protein has been reported to exhibit various protective functions, including antioxidant and chaperone. However, the effects of ATOX1 on the inflammatory response has not been fully elucidated. Thus, we prepared cell permeable Tat-ATOX1 and studied the effects on lipopolysaccharide (LPS)- and 12-O-tetradecanoyl phorbol-13- acetate (TPA)-induced inflammation. Experimental results showed that transduced Tat-ATOX1 protein significantly suppressed LPS-induced intracellular reactive oxygen species (ROS). Also, Tat-ATOX1 protein markedly inhibited LPS- and TPA-induced inflammatory responses by decreasing cyclooxygenase- 2 (COX-2) and inducible nitric oxide synthase (iNOS) and further inhibited phosphorylation of mitogen activated protein kinases (MAPKs; JNK, ERK and p38) and the nuclear factor-kappaB (NF-κB) signaling pathway. These results indicate that the Tat-ATOX1 protein has a pivotal role in inflammation via inhibition of inflammatory responses, suggesting Tat-ATOX1 protein may offer a therapeutic strategy for inflammation. [BMB Reports 2018; 51(12): 654-659].


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Chaperonas Moleculares/metabolismo , FN-kappa B/metabolismo , Animales , Proteínas de Transporte de Catión/genética , Proteínas Transportadoras de Cobre , Ciclooxigenasa 2/metabolismo , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Edema/inducido químicamente , Edema/patología , Lipopolisacáridos/farmacología , Masculino , Ratones , Ratones Endogámicos ICR , Chaperonas Moleculares/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Células RAW 264.7 , Especies Reactivas de Oxígeno/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal/efectos de los fármacos , Acetato de Tetradecanoilforbol/toxicidad
17.
BMB Rep ; 51(10): 538-543, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30269741

RESUMEN

Pancreatic beta cell destruction and dysfunction induced by cytokines is a major cause of type 1 diabetes. Paraoxonase 1 (PON1), an arylesterase with antioxidant activity, has been shown to play an important role in preventing the development of diabetes in transgenic mice. However, no studies have examined the anti-diabetic effect of PON1 delivered to beta cells using protein transduction. In this study, we expressed the cell-permeable PON1 fused with PEP-1 protein transduction domain (PEP-1-PON1) to investigate whether transduced PEP-1-PON1 protects beta cells against cytokine-induced cytotoxicity. PEP-1-PON1 was effectively delivered to INS-1 cells and prevented cytokine-induced cell destruction in a dose-dependent manner. Transduced PEP-1-PON1 significantly reduced the levels of reactive oxygen species (ROS) and nitric oxide (NO), DNA fragmentation, and expression of inflammatory mediators, endoplasmic reticulum (ER) stress proteins, and apoptosis-related proteins in cytokine-treated cells. Moreover, transduced PEP-1-PON1 restored the decrease in basal and glucose-stimulated insulin secretion induced by cytokines. These data indicate that PEP-1-PON1 protects beta cells from cytokine-induced cytotoxicity by alleviating oxidative/nitrosative stress, ER stress, and inflammation. Thus, PEP-1-mediated PON1 transduction might be an effective method to reduce the extent of destruction and dysfunction of pancreatic beta cells in autoimmune diabetes. [BMB Reports 2018; 51(10): 539-544].


Asunto(s)
Apoptosis/efectos de los fármacos , Arildialquilfosfatasa/farmacología , Cisteamina/análogos & derivados , Citocinas/efectos adversos , Secreción de Insulina/efectos de los fármacos , Insulinoma/metabolismo , Insulinoma/patología , Péptidos/farmacología , Proteínas Recombinantes de Fusión/farmacología , Animales , Línea Celular Tumoral , Supervivencia Celular , Cisteamina/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Mediadores de Inflamación/metabolismo , Óxido Nítrico/biosíntesis , Nitritos/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo
18.
J Neurosurg Spine ; 29(5): 599-607, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30141762

RESUMEN

The authors investigated the effects of a silk solution against laminectomy-induced dural adhesion formation and inflammation in a rat model. They found that it significantly reduced postlaminectomy dural adhesion formation and inflammation. Dural adhesion formation, thought to be an inevitable consequence of laminectomy, is one of the most common complications following spinal surgery, and the authors' results indicate that the silk solution might be a potential novel therapeutic agent for dural adhesion formation.


Asunto(s)
Inflamación/complicaciones , Laminectomía/efectos adversos , Seda/efectos adversos , Animales , Modelos Animales de Enfermedad , Interleucina-1beta/metabolismo , Óxido Nítrico/metabolismo , Ratas
19.
Immunobiology ; 223(11): 709-717, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30049418

RESUMEN

Phosphoprotein enriched in astrocytes 15 (PEA15) plays a multi-functional role in neuronal cell survival, however the effects of PEA15 against inflammation have not been investigated yet. To examine the effects of PEP-1-PEA15 protein against lipopolysaccharide (LPS)-induced inflammatory responses in Raw 264.7 cells and in a 12-O-tetradecanoylphobol 13-acetate (TPA)-induced mouse model, we constructed and purified PEP-1-PEA15 protein, which can transduce into cells or tissues. PEP-1-PEA15 inhibited LPS-induced damage in cells including that caused by reactive oxygen species (ROS) production and DNA fragmentation. PEP-1-PEA15 also significantly suppressed activation of mitogen activated protein kinases (MAPKs), pro-inflammatory mediator proteins and various cytokines. In a TPA-induced mouse ear edema model, PEP-1-PEA15 significantly reduced ear weight and thickness as well as MAPK activation as well as the expression levels of COX-2, iNOS, IL-6, IL-1ß, and TNF-α. These results demonstrated that PEP-1-PEA15 showed anti-inflammatory effect in cells and animal model suggesting that this fusion protein protects cells or skin tissues from inflammatory response.


Asunto(s)
Cisteamina/análogos & derivados , Edema/inmunología , Inflamación/inmunología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Macrófagos/inmunología , Péptidos/metabolismo , Fosfoproteínas/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis , Cisteamina/metabolismo , Citocinas/metabolismo , Fragmentación del ADN , Modelos Animales de Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Lipopolisacáridos/inmunología , Masculino , Ratones , Ratones Endogámicos ICR , Células RAW 264.7 , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Acetato de Tetradecanoilforbol/inmunología
20.
Mol Med Rep ; 18(2): 2216-2228, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29916538

RESUMEN

Oxidative stress is known to be a primary risk factor for neuronal diseases. Glutaredoxin (GLRX)­1, a redox­regulator of the thioredoxin superfamily, is known to exhibit an important role in cell survival via various cellular functions. However, the precise roles of GLRX1 in brain ischemia are still not fully understood. The present study investigated whether transduced PEP­1­GLRX1 protein has protective effects against oxidative stress in cells and in an animal model. Transduced PEP­1­GLRX1 protein increased HT­22 cell viability under oxidative stress and this fusion protein significantly reduced intracellular reactive oxygen species and levels of DNA damage. In addition, PEP­1­GLRX1 protein regulated RAC­a serine/threonine­protein kinase and mitogen­activated protein kinase signaling, in addition to apoptotic signaling including B cell lymphoma (Bcl)­2, Bcl­2 associated X, apoptosis regulator, pro­caspase­9 and p53 expression levels. In an ischemic animal model, it was verified that PEP­1­GLRX1 transduced into the Cornu Ammonis 1 region of the animal brain, where it markedly protected against ischemic injury. These results indicate that PEP­1­GLRX1 attenuates neuronal cell death resulting from oxidative stress in vitro and in vivo. Therefore, PEP­1­GLRX1 may exhibit a beneficial role in the treatment of neuronal disorders, including ischemic injury.


Asunto(s)
Cisteamina/análogos & derivados , Glutarredoxinas/farmacología , Hipocampo/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Neuronas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Péptidos/farmacología , Animales , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Línea Celular , Cisteamina/farmacología , Hipocampo/patología , Ratones , Neuronas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...