Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Adv Sci (Weinh) ; 11(10): e2308368, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38236169

RESUMEN

Thermoelectric (TE) generation with solution-processable conducting polymers offers substantial potential in low-temperature energy harvesting based on high tunability in materials, processes, and form-factors. However, manipulating the TE and charge transport properties accompanies structural and energetic disorders, restricting the enhancement of thermoelectric power factor (PF). Here, solution-based strong acid-base treatment techniques are introduced to modulate the doping level of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) thin films with preserving its molecular orientation, enabling to achieve a remarkably high PF of 534.5 µW m-1  K-2 . Interestingly, theoretical modeling suggested that further de-doping can increase the PF beyond the experimental value. However, it is impossible to reach this value experimentally, even without any degradation of PEDOT crystallinity. Uncovering the underlying reason for the limitation, an analysis of the relationship among the microstructure-thermoelectric performance-charge transport property revealed that inter-domain connectivity via tie-chains and the resultant percolation for transport are crucial factors in achieving high TE performance, as in charge transport. It is believed that the methods and fundamental understandings in this work would contribute to the exploitation of conducting polymer-based low-temperature energy harvesting.

2.
Eur Radiol Exp ; 7(1): 68, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37940797

RESUMEN

BACKGROUND: Chest x-ray is commonly used for pulmonary abnormality screening. However, since the image characteristics of x-rays highly depend on the machine specifications, an artificial intelligence (AI) model developed for specific equipment usually fails when clinically applied to various machines. To overcome this problem, we propose an image manipulation pipeline. METHODS: A total of 15,010 chest x-rays from systems with different generators/detectors were retrospectively collected from five institutions from May 2020 to February 2021. We developed an AI model to classify pulmonary abnormalities using x-rays from a single system. Then, we externally tested its performance on chest x-rays from various machine specifications. We compared the area under the receiver operating characteristics curve (AUC) of AI models developed using conventional image processing pipelines (histogram equalization [HE], contrast-limited histogram equalization [CLAHE], and unsharp masking [UM] with common data augmentations) with that of the proposed manipulation pipeline (XM-pipeline). RESULTS: The XM-pipeline model showed the highest performance for all the datasets of different machine specifications, such as chest x-rays acquired from a computed radiography system (n = 356, AUC 0.944 for XM-pipeline versus 0.917 for HE, 0.705 for CLAHE, 0.544 for UM, p [Formula: see text] 0.001, for all) and from a mobile x-ray generator (n = 204, AUC 0.949 for XM-pipeline versus 0.933 for HE, p = 0.042, 0.932 for CLAHE (p = 0.009), 0.925 for UM (p = 0.001). CONCLUSIONS: Applying the XM-pipeline to AI training increased the diagnostic performance of the AI model on the chest x-rays of different machine configurations. RELEVANCE STATEMENT: The proposed training pipeline would successfully promote a wide application of the AI model for abnormality screening when chest x-rays are acquired using various x-ray machines. KEY POINTS: • AI models developed using x-rays of a specific machine suffer from generalization. • We proposed a new image processing pipeline to address the generalization problem. • AI models were tested using multicenter external x-ray datasets of various machines. • AI with our pipeline achieved the highest diagnostic performance than conventional methods.


Asunto(s)
Inteligencia Artificial , Procesamiento de Imagen Asistido por Computador , Rayos X , Estudios Retrospectivos , Radiografía
3.
J Biol Chem ; 299(6): 104747, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37094697

RESUMEN

Protein synthesis is a fundamental step in gene expression, with modulation of mRNA translation at the elongation step emerging as an important regulatory node in shaping cellular proteomes. In this context, five distinct lysine methylation events on eukaryotic elongation factor 1A (eEF1A), a fundamental nonribosomal elongation factor, are proposed to influence mRNA translation elongation dynamics. However, a lack of affinity tools has hindered progress in fully understanding how eEF1A lysine methylation impacts protein synthesis. Here we develop and characterize a suite of selective antibodies to investigate eEF1A methylation and provide evidence that methylation levels decline in aged tissue. Determination of the methyl state and stoichiometry on eEF1A in various cell lines by mass spectrometry shows modest cell-to-cell variability. We also find by Western blot analysis that knockdown of individual eEF1A-specific lysine methyltransferases leads to depletion of the cognate lysine methylation event and indicates active crosstalk between different sites. Further, we find that the antibodies are specific in immunohistochemistry applications. Finally, application of the antibody toolkit suggests that several eEF1A methylation events decrease in aged muscle tissue. Together, our study provides a roadmap for leveraging methyl state and sequence-selective antibody reagents to accelerate discovery of eEF1A methylation-related functions and suggests a role for eEF1A methylation, via protein synthesis regulation, in aging biology.


Asunto(s)
Lisina , Extensión de la Cadena Peptídica de Translación , Factor 1 de Elongación Peptídica , Anticuerpos/metabolismo , Lisina/metabolismo , Metilación , Factor 1 de Elongación Peptídica/genética , Factor 1 de Elongación Peptídica/química , Factor 1 de Elongación Peptídica/metabolismo
4.
Artículo en Inglés | MEDLINE | ID: mdl-36749965

RESUMEN

The use of oxygen evolution co-catalysts (OECs) with hematite photoanodes has received much attention because of the potential to reduce surface charge recombination. However, the low surface charge transfer and bulk charge separation rate of hematite are not improved by decorating with OECs, and the intrinsic drawbacks of hematite still limit efficient photoelectrochemical (PEC) water splitting. Here, we successfully overcame the sluggish oxygen evolution reaction performance of hematite for water splitting by inserting zero-dimensional (0D) nanofragmented MXene (NFMX) as a hole transport material between the hematite and the OEC. The 0D NFMX was fabricated from two-dimensional (2D) MXene sheets and deposited onto the surface of a three-dimensional (3D) hematite photoanode via a centrifuge-assisted method without altering the inherent performance of the 2D MXene sheets. Among many OECs, NiFe(OH)x was selected as the OEC to improve hematite PEC performance in our system because of its efficient charge transport behavior and high stability. Because of the great synergy between NFMX and NiFe(OH)x, NiFe(OH)x/NFMX/Fe2O3 achieved a maximum photocurrent density of 3.09 mA cm-2 at 1.23 VRHE, which is 2.78-fold higher than that of α-Fe2O3 (1.11 mA cm-2). Furthermore, the poor stability of MXene in an aqueous solution for water splitting was resolved by uniformly coating it with NiFe(OH)x, after which it showed outstanding stability for 60 h at 1.23 VRHE. This study demonstrates the successful use of NFMX as a hole transport material combined with an OEC for highly efficient water splitting.

5.
ACS Appl Mater Interfaces ; 15(2): 2852-2860, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36608257

RESUMEN

Conjugated polymer-based energy-harvesting devices hold distinctive advantages in terms of low toxicity, high flexibility, and capability of large-area integration at low cost for sustainable development. An organic thermoelectric (OTE) device has been considered one of the promising energy-harvesting candidates in recent years because it can efficiently convert low-temperature waste heat into electricity over its inorganic counterparts. However, a cruel irony is that environmentally toxic solvents and acids are utilized for fabrication and performance improvement of the OTE devices, retarding the development and use of genuinely green energy-harvesting. Here, we present eco-friendly, non-toxic strategies for a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)-based high-performance OTE device by incorporating a nature-abundant material, vitamin C (VC), as an additive. We found that the intrinsic polar nature and reducing ability of VC induce synergy effects of microstructure alignment with PSS removal and dedoping of PEDOT, leading to simultaneous enhancement of the electrical conductivity (>400 S cm-1) and the Seebeck coefficient (>30 µV K-1) and a resultant high thermoelectric power factor of 51.8 µW m-1 K-2. In addition, inspired by the eco-friendly fabrication process, we further demonstrated a transient OTE device, which can be fully degraded with naturally occurring substances, by fabricating it on a bio-based cellulose acetate substrate. We believe that our eco-friendly strategies from fabrication to disposal of the OTE can be applied to the development of high-performance, wearable, and bio-compatible OTE devices with minimal waste and further trigger the research on genuinely green thermal energy harvesting.

6.
Artículo en Inglés | MEDLINE | ID: mdl-36294056

RESUMEN

This study aimed to investigate the effect of the load and bar position on trunk and lower extremity muscle activity during squat exercise. High bar back squats (HBBS) and low bar back squats (LBBS) were performed in random order at 50%, 60%, and 70% loads of one repetition maximum by 28 experienced healthy adult men who had been performing squats for at least one year. Before the experiment, the maximal voluntary contraction of the vastus medialis, vastus lateralis, rectus femoris, biceps femoris, rectus abdominis, transverse abdominis, external oblique, and erector spinae muscles was measured by means of surface electromyography. In addition, eccentric and concentric exercises were performed for 3 s each to measure the muscle activity. There was a significant difference in muscle activity according to the load for all muscles in the eccentric and concentric phases (p < 0.05), indicating that muscle activity increased as the load increased. In addition, in the comparison between HBBS and LBBS, significant differences were shown in all lower extremity muscles and all trunk muscles except for the external oblique in the concentric phase according to the bar position (p < 0.05). HBBS showed a higher muscle activity of the lower extremity in the eccentric and concentric phases than in LBBS, while LBBS showed a higher muscle activity of the trunk muscle in the eccentric and concentric phases than in HBBS (p < 0.05). HBBS requires more force in the lower extremity than LBBS and is particularly advantageous in strengthening the muscular strength of the quadriceps. In contrast, LBBS requires more muscle activity in the trunk than HBBS and is more effective in carrying heavier loads because of the advantage of body stability. This study suggests that rehabilitation experts apply the bar position and load as important variables affecting the intensity and method of training for target muscle strengthening of the lower extremities and trunk.


Asunto(s)
Entrenamiento de Fuerza , Adulto , Masculino , Humanos , Entrenamiento de Fuerza/métodos , Extremidad Inferior/fisiología , Electromiografía , Músculo Cuádriceps/fisiología , Músculo Esquelético/fisiología , Recto del Abdomen/fisiología
7.
Brain Behav ; 12(5): e2565, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35398981

RESUMEN

The purpose of this study was to investigate the effects of First-Person Perspective Action Observation training and Third-Person Perspective Action Observation training on upper extremity function and activities of daily living of patients with stroke-induced hemiplegia. This was a single-blind randomized study of 20 stroke patients (more than 6 months after the incident stroke) with upper extremity disabilities. The subjects who satisfied the inclusion and exclusion criteria were randomly divided into two groups: First-Person Perspective Action Observation training group and Third-Person Perspective Action Observation training group. The measurements were performed using Action Research Arm Test (ARAT) and Korean Modified Barthel Index (K-MBI) and Motor Activity Log (MAL). The results of this study showed statistically significant differences (p < .05) in the upper extremity function and activity of daily living after the intervention in all two groups. Upon comparison of the amount of change between the experimental group and the control group, there was significant difference in upper extremity function and activity of daily living (p < .05). Action Observation training was found to have an effect on the upper extremity function and activity of daily living on chronic stroke patients. First-Person Perspective Action Observation training was more effective in improving upper limb function and activity of daily living than the Third-Person Perspective Action Observation training.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Actividades Cotidianas , Humanos , Recuperación de la Función , Método Simple Ciego , Accidente Cerebrovascular/terapia , Rehabilitación de Accidente Cerebrovascular/métodos , Resultado del Tratamiento , Extremidad Superior
8.
IEEE Trans Med Imaging ; 41(2): 491-499, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34587004

RESUMEN

In MRI, deep neural networks have been proposed to reconstruct diffusion model parameters. However, the inputs of the networks were designed for a specific diffusion gradient scheme (i.e., diffusion gradient directions and numbers) and a specific b-value that are the same as the training data. In this study, a new deep neural network, referred to as DIFFnet, is developed to function as a generalized reconstruction tool of the diffusion-weighted signals for various gradient schemes and b-values. For generalization, diffusion signals are normalized in a q-space and then projected and quantized, producing a matrix (Qmatrix) as an input for the network. To demonstrate the validity of this approach, DIFFnet is evaluated for diffusion tensor imaging (DIFFnetDTI) and for neurite orientation dispersion and density imaging (DIFFnetNODDI). In each model, two datasets with different gradient schemes and b-values are tested. The results demonstrate accurate reconstruction of the diffusion parameters at substantially reduced processing time (approximately 8.7 times and 2240 times faster processing time than conventional methods in DTI and NODDI, respectively; less than 4% mean normalized root-mean-square errors (NRMSE) in DTI and less than 8% in NODDI). The generalization capability of the networks was further validated using reduced numbers of diffusion signals from the datasets and a public dataset from Human Connection Project. Different from previously proposed deep neural networks, DIFFnet does not require any specific gradient scheme and b-value for its input. As a result, it can be adopted as an online reconstruction tool for various complex diffusion imaging.


Asunto(s)
Imagen de Difusión Tensora , Redes Neurales de la Computación , Encéfalo , Imagen de Difusión por Resonancia Magnética/métodos , Imagen de Difusión Tensora/métodos , Humanos , Imagen por Resonancia Magnética , Neuritas
9.
ACS Appl Mater Interfaces ; 13(46): 54906-54915, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34751554

RESUMEN

The photoelectrochemical performance of a co-doped hematite photoanode might be hindered due to the unintentionally diffused Sn from a fluorine-doped tin oxide (FTO) substrate during the high-temperature annealing process by providing an increased number of recombination centers and structural disorder. We employed a two-step annealing process to manipulate the Sn concentration in co-doped hematite. The Sn content [Sn/(Sn + Fe)] of a two-step annealing sample decreased to 1.8 from 6.9% of a one-step annealing sample. Si and Sn co-doped hematite with the reduced Sn content exhibited less structural disorder and improved charge transport ability to achieve a 3.0 mA cm-2 photocurrent density at 1.23 VRHE, which was 1.3-fold higher than that of the reference Si and Sn co-doped Fe2O3 (2.3 mA cm-2). By decorating with the efficient co-catalyst NiFe(OH)x, a maximum photocurrent density of 3.57 mA cm-2 was achieved. We further confirmed that the high charging potential and poor cyclability of the zinc-air battery could be dramatically improved by assembling the optimized, stable, and low-cost hematite photocatalyst with excellent OER performance as a substitute for expensive Ir/C in the solar-assisted chargeable battery. This study demonstrates the significance of manipulating the unintentionally diffused Sn content diffused from FTO to maximize the OER performance of the co-doped hematite.

10.
Nat Commun ; 12(1): 4309, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34262036

RESUMEN

To boost the photoelectrochemical water oxidation performance of hematite photoanodes, high temperature annealing has been widely applied to enhance crystallinity, to improve the interface between the hematite-substrate interface, and to introduce tin-dopants from the substrate. However, when using additional dopants, the interaction between the unintentional tin and intentional dopant is poorly understood. Here, using germanium, we investigate how tin diffusion affects overall photoelectrochemical performance in germanium:tin co-doped systems. After revealing that germanium is a better dopant than tin, we develop a facile germanium-doping method which suppresses tin diffusion from the fluorine doped tin oxide substrate, significantly improving hematite performance. The NiFeOx@Ge-PH photoanode shows a photocurrent density of 4.6 mA cm-2 at 1.23 VRHE with a low turn-on voltage. After combining with a perovskite solar cell, our tandem system achieves 4.8% solar-to-hydrogen conversion efficiency (3.9 mA cm-2 in NiFeOx@Ge-PH/perovskite solar water splitting system). Our work provides important insights on a promising diagnostic tool for future co-doping system design.

11.
ACS Appl Mater Interfaces ; 13(22): 26330-26338, 2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34037381

RESUMEN

The hole density of individual copper sulfide nanocrystals (Cu2-xS NCs) is determined from the stoichiometric mismatch (x) between copper and sulfide atoms. Consequently, the electronic properties of the material vary over a range of x. To exploit Cu2-xS NCs in devices, assemblies of NCs are typically required. Herein, we investigate the influence of x, referred to as the stoichiometric doping effect, on the structural, optical, electrical, and thermoelectric properties of electronically coupled Cu2-xS NC assemblies. The doping process is done by immersing the solid NC assemblies into a solution containing a Cu(I) complex for different durations (0-10 min). As Cu+ gradually occupied the copper-deficient sites of Cu2-xS NCs, x could be controlled from 0.9 to less than 0.1. Consequently, the near-infrared (NIR) absorbance of Cu2-xS NC assemblies changes systematically with x. With increasing x, electrical conductivity increased and the Seebeck coefficient decreased systematically, leading to the maximal thermoelectric power factor from a film of Cu2-xS NCs at an optimal doping condition yielding x = 0.1. The physical characteristics of the Cu2-xS NC assemblies investigated herein will provide guidelines for exploiting this emerging class of nanocrystal system based on doping.

12.
RSC Adv ; 11(36): 22327-22333, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35480785

RESUMEN

A monolithic integration of high-performance soft electronic modules into various fabric materials has enabled a paradigm shift in wearable textile electronics. However, the current textile electronics have struggled against fatigue under repetitive deformation due to the absence of materials and structural design strategies for imparting electrical and mechanical robustness to individual fibers. Here, we report a mechanically and electrically durable, stretchable electronic textile (MED-ET) enabled by a precisely controlled diffusion of tough self-healing stretchable inks into fibers and an adoption of the kirigami-inspired design. Remarkably, the conductive percolative pathways in the fabric of MED-ET even under a harshly deformed environment were stably maintained due to an electrical recovery phenomenon which originates from the spontaneous rearrangement of Ag flakes in the self-healing polymer matrix. Specifically, such a unique property enabled damage-resistant performance when repetitive deformation and scratch were applied. In addition, the kirigami-inspired design was capable of efficiently dissipating the accumulated stress in the conductive fabric during stretching, thereby providing high stretchability (a tensile strain of 300%) without any mechanical fracture or electrical malfunction. Finally, we successfully demonstrate various electronic textile applications such as stretchable micro-light-emitting diodes (Micro-LED), electromyogram (EMG) monitoring and all-fabric thermoelectric devices (F-TEG).

13.
Neuroimage ; 224: 117432, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33038539

RESUMEN

Respiration-induced B0 fluctuation corrupts MRI images by inducing phase errors in k-space. A few approaches such as navigator have been proposed to correct for the artifacts at the expense of sequence modification. In this study, a new deep learning method, which is referred to as DeepResp, is proposed for reducing the respiration-artifacts in multi-slice gradient echo (GRE) images. DeepResp is designed to extract the respiration-induced phase errors from a complex image using deep neural networks. Then, the network-generated phase errors are applied to the k-space data, creating an artifact-corrected image. For network training, the computer-simulated images were generated using artifact-free images and respiration data. When evaluated, both simulated images and in-vivo images of two different breathing conditions (deep breathing and natural breathing) show improvements (simulation: normalized root-mean-square error (NRMSE) from 7.8 ± 5.2% to 1.3 ± 0.6%; structural similarity (SSIM) from 0.88 ± 0.08 to 0.99 ± 0.01; ghost-to-signal-ratio (GSR) from 7.9 ± 7.2% to 0.6 ± 0.6%; deep breathing: NRMSE from 13.9 ± 4.6% to 5.8 ± 1.4%; SSIM from 0.86 ± 0.03 to 0.95 ± 0.01; GSR 20.2 ± 10.2% to 5.7 ± 2.3%; natural breathing: NRMSE from 5.2 ± 3.3% to 4.0 ± 2.5%; SSIM from 0.94 ± 0.04 to 0.97 ± 0.02; GSR 5.7 ± 5.0% to 2.8 ± 1.1%). Our approach does not require any modification of the sequence or additional hardware, and may therefore find useful applications. Furthermore, the deep neural networks extract respiration-induced phase errors, which is more interpretable and reliable than results of end-to-end trained networks.


Asunto(s)
Encéfalo/diagnóstico por imagen , Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador/métodos , Respiración , Artefactos , Humanos , Imagen por Resonancia Magnética , Redes Neurales de la Computación
14.
ACS Appl Mater Interfaces ; 12(23): 26250-26257, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32403922

RESUMEN

We report two organocompatible strategies to enhance the output performance of all-solution-processed poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) thermoelectric generators (TEGs): introducing an additive spray printing process and functionalized polymer interlayers to reduce the module resistance. The spray printing enabled the deposition of 1-µm-thick PEDOT:PSS layers with a high degree of design freedom, resulting in a significantly reduced sheet resistance of 16 Ω sq-1 that is closely related to the thermoelectric output performance. Also, by inserting an ultrathin silane-terminated polystyrene (PS) interlayer between the PEDOT:PSS thermoelectric layers and inkjet-printed Ag interconnects selectively, the contact resistivity extracted by the transmission line method was reduced from 6.02 × 10-2 to 2.77 × 10-2 Ω cm2. We found that the PS interlayers behaved as a thin tunneling layer, which facilitated the carrier injection from the inkjet-printed Ag electrodes into the PEDOT:PSS films by field emission with an effectively lowered energy barrier. The activation energy was also extracted using the Richardson equation, resulting in a reduction of 2.59 ± 0.04 meV after the PS treatment. Scalable plastic-compatible processability and selective interface engineering enabled to demonstrate the flexible 74-leg PEDOT:PSS TEGs exhibiting the open-circuit voltage of 9.21 mV and the output power of 2.23 nW at a temperature difference of 10 K.

15.
ACS Appl Mater Interfaces ; 12(1): 1110-1119, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31825593

RESUMEN

A series of ionically interconnected polypyrrole (PPy) films are fabricated through two-monomer-connected-precursor polymerization by varying diacid linkers, thereby significantly influencing the crystalline morphology and electrical properties. The structure obtained using 1,5-napthalenedisulfonic acid (PPy-Nap) as a fused aromatic linker exhibits a higher electrical conductivity (∼78 S cm-1) than that (6.7 S cm-1) without a linker (PPy-ref). Cryogenic conductivity measurements reveal that the percolation carrier transport barrier of PPy-Nap is significantly smaller than that of PPy-ref, and the calculated carrier mobility of PPy-Nap is ∼5 times higher compared to PPy-ref. The carrier transport characteristics show a good agreement with morphological data by 2D grazing-incidence X-ray scattering. All PPys have similar doped charge carrier concentrations and, thus, similar Seebeck coefficients (5-8 µV K-1) but very different electrical conductivities. Consequently, PPy-Nap exhibits a higher power factor than that of PPy-ref (0.21 vs 0.043 µW m-1 K-2). The results show that the trade-off relationship between the Seebeck coefficient and electrical conductivity can be overcome by improving crystalline morphology and carrier transport. Thus, both the electrical conductivities and thermoelectric power factors can be improved with maintaining the Seebeck coefficients by enhancing the ordered conductive domains and carrier mobility while maintaining the doping level.

16.
J Phys Ther Sci ; 31(2): 149-152, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30858654

RESUMEN

[Purpose] The purpose of this study is to examine the sleep quality, pain, and instrumental activities of daily living (IADL) of outpatients with chronic stroke, and to examine their correlation. [Participants and Methods] This study was conducted on 42 outpatients with chronic stroke, and data on their sleep quality, pain, and instrumental activities of daily living were collected and analyzed using the survey measurement tools. [Results] The analysis shows significant correlations among the sleep quality, pain, and instrumental activities of daily living of the outpatients with chronic stroke. [Conclusion] The findings of this study confirmed that the sleep quality and pain of outpatients with chronic stroke was related with their capacities of instrumental activities of daily living.

17.
Osong Public Health Res Perspect ; 10(1): 2-5, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30847264

RESUMEN

OBJECTIVES: The purpose of this research was to study the influences of dual task training on upper extremity function and performance of daily activities of chronic stroke patients. METHODS: Dual task training was performed on 21 patients who had suffered a chronic stroke with hemiplegia. The dual task training was performed for 30 minutes per session, for 5 days a week, for 3 weeks. There were 5 evaluations carried out over 3 weeks before and after the intervention. Changes in upper extremity function were measured by using the Box and block test. Changes in the performance of daily activities were measured using the Korea-Modified Barthel Index. RESULTS: The mean upper limb function score of the chronic stroke patients increased significantly from 21.88 ± 19.99 before the intervention, to 26.22 ± 15.65 after the intervention (p < 0.05), and the mean daily activities score increased significantly from 65.82 ± 12.04, to 67.29 ± 12.90 (p < 0.05). CONCLUSION: Dual task training effectively improved upper extremity function, and the performance of daily activities in chronic stroke patients.

18.
J Phys Ther Sci ; 31(1): 36-38, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30774203

RESUMEN

[Purpose] The purpose of this study was to examine the effects of time-use intervention on the quality of life of outpatients with chronic stroke. [Participants and Methods] This study randomly allocated 31 chronic stroke outpatients into an experimental group (n=16) and a control group (n=15). The experiment group was given general rehabilitative therapy three times per week for eight weeks, and time-use intervention through counselling once per week for eight weeks. The control group was given general rehabilitative therapy only for three times per week for eight weeks. The World Health Organization Quality of Life-BREF (WHOQOL-BREF) was used to measure the changes in the quality of life of the participants. [Results] After the intervention, the experimental group showed a significant improvement in the overall quality of life in comparison with the control group. Looking at specific categories, the experimental group showed significant improvements in the physical, spiritual, and environmental areas in contrast to the control group. [Conclusion] The findings of this study demonstrated the positive effects of time-use intervention on an improvement in the quality of life of outpatients with chronic stroke.

19.
RSC Adv ; 9(10): 5731-5737, 2019 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35515898

RESUMEN

Scientific and technological advances in transparent conductive electrodes improve the heating performance of flexible transparent film heaters (TFHs), which can be utilized for various applications as defrosters and heaters. To achieve high performance as well as practical TFHs, several conditions, such as high optical transmittance, low electrical resistance, heating uniformity, and operational stability in various environmental conditions should be satisfied. However, due to the trade-offs between optical transmittance and electrical resistance, it is not easy to fulfill all the requirements concurrently. Here we report flexible TFHs using a ternary composite of silver nanowire (AgNW), conducting polymer (i.e., poly[3,4-ethylenedioxythiophene]:polystyrene sulfonate [PEDOT:PSS]), and a thin conductive oxide (i.e., indium tin oxide [ITO]) layer, exhibiting higher performance in terms of the maximum heating temperature (>110 °C), operational stability, mechanical flexibility, and optical transmittance (95% at 550 nm), compared to pristine AgNW-based TFHs. We also demonstrated the stable operation of the AgNW-PEDOT:PSS/ITO TFHs soaked in water, showing excellent environmental stability. To analyse the fundamental mechanisms for the improved performance of the AgNW-PEDOT:PSS/ITO TFHs, we investigated the progress of joule heating using a device simulator, and found that the improvement originated not only from reduced electrical resistance but also from enhanced heat dissipation with PEDOT:PSS and ITO. We anticipate that our analysis and results will be helpful for further development of practical flexible TFHs.

20.
Phytomedicine ; 42: 164-171, 2018 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-29655682

RESUMEN

BACKGROUND: Pristimerin is a quinonemethide triterpenoid with anti-cancer, anti-angiogenic, anti-inflammatory and anti-protozoal activity. However, the therapeutic role of pristimerin in colitis-associated colorectal carcinogenesis is unknown. PURPOSE: We sought to examine the therapeutic effects of pristimerin on colitis-associated colon cancer induced in mice using azoxymethane (AOM)/dextran sulfate sodium (DSS). The goal was to identify the potential mechanism of action underlying the pharmacological activity of pristimerin. METHODS: BALB/c mice were injected with AOM and administered 2% DSS in drinking water. The mice were fed with a diet supplemented with pristimerin (1 to 5 ppm), and colonic tissue was collected at 64 days. The inflammatory status of the colon was assessed by determining the levels of cyclooxygenase-2, inducible nitric oxide synthase and pro-inflammatory cytokines using Western blotting, immunohistochemistry and real-time RT-PCR analyses. Markers of proliferation (proliferating cell nuclear antigen) and apoptosis (TUNEL) were identified in the colon tissues immunohistochemically. The levels of cell cycle-, apoptosis-, and signaling-related proteins were detected by Western blot in colon tissues. RESULTS: Administration of pristimerin significantly reduced the formation of colonic tumors. Western blot and immunohistological analyses revealed that dietary pristimerin markedly reduced NF-κB-positive cells and levels of inflammation-related proteins in colon tissue. Pristimerin also reduced cell proliferation, induced apoptosis, and decreased the phosphorylation of AKT and FOXO3a in colon tissue. CONCLUSION: Pristimerin administration decreased inflammation and proliferation induced by AOM/DSS in colon tissue. It also induced apoptosis and regulated the AKT/FOXO3a signaling pathway. Overall, this study indicates the potential value of pristimerin in suppressing colon tumorigenesis.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Antineoplásicos Fitogénicos/farmacología , Colitis/complicaciones , Neoplasias del Colon/tratamiento farmacológico , Triterpenos/farmacología , Animales , Apoptosis/efectos de los fármacos , Azoximetano/toxicidad , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Colitis/inducido químicamente , Neoplasias del Colon/inducido químicamente , Neoplasias del Colon/patología , Citocinas/metabolismo , Sulfato de Dextran/toxicidad , Femenino , Proteína Forkhead Box O3/metabolismo , Ratones Endogámicos BALB C , FN-kappa B/metabolismo , Triterpenos Pentacíclicos , Proteínas Proto-Oncogénicas c-akt/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...