Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Sci Rep ; 14(1): 10137, 2024 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698108

RESUMEN

Gut microbiota impact host physiology, though simultaneous investigations in ectothermic vertebrates are rare. Particularly, amphibians may exhibit more complex interactions between host physiology and the effects of gut microbiota due to the combination of seasonal changes and complex life histories. In this study, we assessed the relationships among food resources, gut bacterial communities, and host physiology in frogs (Phelophylax nigromaculatus), taking into account seasonal and life history variations. We found that food sources were not correlated with physiological parameters but had some relationships with the gut bacterial community. Variations in gut bacterial community and host physiology were influenced by the combined effects of seasonal differences and life history, though mostly driven by seasonal differences. An increase in Firmicutes was associated with higher fat content, reflecting potential fat storage in frogs during the non-breeding season. The increase in Bacteroidetes resulted in lower fat content in adult frogs and decreased immunity in juvenile frogs during the breeding season, demonstrating a direct link. Our results suggest that the gut microbiome may act as a link between food conditions and physiological status, and that the combined effect of seasons and life history could reinforce the relationship between gut microbiota and physiological status in ectothermic animals. While food sources may influence the gut microbiota of ectotherms, we contend that temperature-correlated seasonal variation, which predominately influences most ectotherms, is a significant factor.


Asunto(s)
Anuros , Microbioma Gastrointestinal , Estaciones del Año , Animales , Microbioma Gastrointestinal/fisiología , Anuros/fisiología , Anuros/microbiología , Bacterias , Bacteroidetes
2.
Foods ; 13(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38611347

RESUMEN

Hypertension is the crucial modifiable risk factor for cardiovascular diseases, and efforts to identify functional foods that are effective for hypertension control are increasing. The nutgall tree (NT, Rhus chinensis Mill.) is used in traditional medicine and food because of its medicinal value. However, the role of NT in hypertension has not been investigated. Therefore, the hypotensive effect of NT leaf ethanol extract (NTE) was investigated in spontaneously hypertensive rats (SHRs). SHRs were allocated to three groups (control, 300, or 1000 mg/kg NTE), and blood pressure was measured before and after oral administration. Systolic and diastolic blood pressure significantly decreased in the NTE 1000 mg/kg group and was the lowest at 2 h after administration (-26.4 ± 10.3, -33.5 ± 9.8%, respectively). Daily NTE administration for five days also resulted in a similar effect. Further, the vasorelaxant effects and related mechanisms were investigated in the aortas of Sprague Dawley rats. NTE showed the dose-dependent blood-vessel-relaxing effect, and its mechanism involves the NO-sGC-cGMP pathway, activation of K+ channels, and reduction in the vasoconstrictive action of angiotensin II. Therefore, our study provides basic data indicating the potential use of NTE as a functional food for high blood pressure.

3.
Sci Rep ; 14(1): 8784, 2024 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627500

RESUMEN

Eustachian tube balloon dilatation (ETBD) has shown promising results in the treatment of ET dysfunction (ETD); however, recurrent symptoms after ETBD frequently occur in patients with refractory ETD. The excessive pressure of balloon catheter during ETBD may induce the tissue hyperplasia and fibrotic changes around the injured mucosa. Sirolimus (SRL), an antiproliferative agent, inhibits tissue proliferation. An SRL-coated balloon catheter was fabricated using an ultrasonic spray coating technique with a coating solution composed of SRL, purified shellac, and vitamin E. This study aimed to investigate effectiveness of ETBD with a SRL-coated balloon catheter to prevent tissue proliferation in the rat ET after ETBD. In 21 Sprague-Dawley rats, the left ET was randomly divided into the control (drug-free ETBD; n = 9) and the SRL (n = 9) groups. All rats were sacrificed for histological examination immediately after and at 1 and 4 weeks after ETBD. Three rats were used to represent the normal ET. The SRL-coated ETBD significantly suppressed tissue proliferation caused by mechanical injuries compared with the control group. ETBD with SRL-coated balloon catheter was effective and safe to maintain ET luminal patency without tissue proliferation at the site of mechanical injuries for 4 weeks in a rat ET model.


Asunto(s)
Enfermedades del Oído , Trompa Auditiva , Humanos , Ratas , Animales , Dilatación/métodos , Ratas Sprague-Dawley , Cateterismo/métodos , Enfermedades del Oído/terapia , Enfermedades del Oído/diagnóstico , Resultado del Tratamiento
4.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38673809

RESUMEN

Cnidium monnieri (L.) Cusson, a member of the Apiaceae family, is rich in coumarins, such as imperatorin and osthole. Cnidium monnieri fruit (CM) has a broad range of therapeutic potential that can be used in anti-bacterial, anti-cancer, and sexual dysfunction treatments. However, its efficacy in lowering blood pressure through vasodilation remains unknown. This study aimed to assess the potential therapeutic effect of CM 50% ethanol extract (CME) on hypertension and the mechanism of its vasorelaxant effect. CME (1-30 µg/mL) showed a concentration-dependent vasorelaxation on constricted aortic rings in Sprague Dawley rats induced by phenylephrine via an endothelium-independent mechanism. The vasorelaxant effect of CME was inhibited by blockers of voltage-dependent and Ca2+-activated K+ channels. Additionally, CME inhibited the vascular contraction induced by angiotensin II and CaCl2. The main active compounds of CM, i.e., imperatorin (3-300 µM) and osthole (1-100 µM), showed a concentration-dependent vasorelaxation effect, with half-maximal effective concentration values of 9.14 ± 0.06 and 5.98 ± 0.06 µM, respectively. Orally administered CME significantly reduced the blood pressure of spontaneously hypertensive rats. Our research shows that CME is a promising treatment option for hypertension. However, further studies are required to fully elucidate its therapeutic potential.


Asunto(s)
Antihipertensivos , Presión Sanguínea , Cnidium , Etanol , Frutas , Furocumarinas , Hipertensión , Extractos Vegetales , Ratas Endogámicas SHR , Ratas Sprague-Dawley , Vasodilatadores , Animales , Cnidium/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Presión Sanguínea/efectos de los fármacos , Ratas , Frutas/química , Vasodilatadores/farmacología , Masculino , Antihipertensivos/farmacología , Etanol/química , Furocumarinas/farmacología , Hipertensión/tratamiento farmacológico , Hipertensión/fisiopatología , Vasodilatación/efectos de los fármacos , Cumarinas/farmacología , Cumarinas/química
5.
Bioact Mater ; 37: 172-190, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38549771

RESUMEN

Biliary strictures are characterized by the narrowing of the bile duct lumen, usually caused by surgical biliary injury, cancer, inflammation, and scarring from gallstones. Endoscopic stent placement is a well-established method for the management of biliary strictures. However, maintaining optimal mechanical properties of stents and designing surfaces that can prevent stent-induced tissue hyperplasia and biofilm formation are challenges in the fabrication of biodegradable biliary stents (BBSs) for customized treatment. This study proposes a novel approach to fabricating functionalized polymer BBSs with nanoengineered surfaces using 3D printing. The 3D printed stents, fabricated from bioactive silica poly(ε-carprolactone) (PCL) via a sol-gel method, exhibited tunable mechanical properties suitable for supporting the bile duct while ensuring biocompatibility. Furthermore, a nanoengineered surface layer was successfully created on a sirolimus (SRL)-coated functionalized PCL (fPCL) stent using Zn ion sputtering-based plasma immersion ion implantation (S-PIII) treatment to enhance the performance of the stent. The nanoengineered surface of the SRL-coated fPCL stent effectively reduced bacterial responses and remarkably inhibited fibroblast proliferation and initial burst release of SRL in vitro systems. The physicochemical properties and biological behaviors, including in vitro biocompatibility and in vivo therapeutic efficacy in the rabbit bile duct, of the Zn-SRL@fPCL stent demonstrated its potential as a versatile platform for clinical applications in bile duct tissue engineering.

6.
PLoS One ; 19(2): e0298245, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38363754

RESUMEN

The gut microbiota maintains a deeply symbiotic relationship with host physiology, intricately engaging with both internal (endogenous) and external (exogenous) factors. Anurans, especially those in temperate regions, face the dual challenges of significant external influences like hibernation and complex internal variances tied to different life histories. In our research, we sought to determine whether different life stages (juvenile versus adult) of the Japanese wrinkled frog (Glandirana rugosa) lead to distinct shifts in gut bacterial communities during winter (hibernation) and its subsequent transition to spring. As hypothesized, we observed a more pronounced variability in the gut bacterial diversity and abundance in juvenile frogs compared to their adult counterparts. This suggests that the gut environment may be more resilient or stable in adult frogs during their hibernation period. However, this pronounced difference was confined to the winter season; by spring, the diversity and abundance of gut bacteria in both juvenile and adult frogs aligned closely. Specifically, the variance in gut bacterial diversity and composition between winter and spring appears to mirror the frogs' ecological adaptations. During the hibernation period, a dominance of Proteobacteria suggests an emphasis on supporting intracellular transport and maintaining homeostasis, as opposed to active metabolism in the frogs. Conversely, come spring, an uptick in bacterial diversity coupled with a dominance of Firmicutes and Bacteroidetes points to an upsurge in metabolic activity post-hibernation, favoring enhanced nutrient assimilation and energy metabolism. Our findings highlight that the relationship between the gut microbiome and its host is dynamic and bidirectional. However, the extent to which changes in gut bacterial diversity and composition contribute to enhancing hibernation physiology in frogs remains an open question, warranting further investigation.


Asunto(s)
Microbioma Gastrointestinal , Hibernación , Animales , Microbioma Gastrointestinal/fisiología , Hibernación/fisiología , Estaciones del Año , Anuros , Bacterias/genética , Ranidae/microbiología
7.
Biomedicines ; 12(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38397948

RESUMEN

Natural compounds, known for diverse pharmacological properties, have attracted attention as potential sources for hypertension treatment. Previous studies have revealed the hypotensive effect and vascular relaxation of prunetin, a natural compound derived from Prunus yedoensis. However, the potential blood pressure-lowering and vasorelaxant effects of sakuranetin, another representative compound found in plants belonging to the genus Prunus, have remained unexplored. We aimed to fill this gap by investigating the hypotensive and vasorelaxant effects of sakuranetin in rats. Results indicated that sakuranetin, particularly in the sakuranetin 20 mg/kg group, led to significant reductions in systolic blood pressure (SBP) and diastolic blood pressure (DBP) by -14.53 ± 5.64% and -19.83 ± 6.56% at 4 h after administration. In the sakuranetin 50 mg/kg group, the SBP and DBP decreased by -13.27 ± 6.86% and -16.62 ± 10.01% at 2 h and by -21.61 ± 4.49% and -30.45 ± 5.21% at 4 h after administration. In addition, we identified the vasorelaxant effects of sakuranetin, attributing its mechanisms to the inhibition of calcium influx and the modulation of angiotensin II. Considering its hypotensive and vasorelaxant effects, sakuranetin could potentially serve as an antihypertensive agent. However, further research is required to evaluate the safety and long-term efficacy.

8.
Bioact Mater ; 34: 112-124, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38204564

RESUMEN

Blood-contacting devices must be designed to minimize the risk of bloodstream-associated infections, thrombosis, and intimal lesions caused by surface friction. However, achieving effective prevention of both bloodstream-associated infections and thrombosis poses a challenge due to the conflicting nature of antibacterial and antithrombotic activities, specifically regarding electrostatic interactions. This study introduced a novel biocompatible hydrogel of sodium alginate and zwitterionic carboxymethyl chitosan (ZW@CMC) with antibacterial and antithrombotic activities for use in catheters. The ZW@CMC hydrogel demonstrates a superhydrophilic surface and good hygroscopic properties, which facilitate the formation of a stable hydration layer with low friction. The zwitterionic-functionalized CMC incorporates an additional negative sulfone group and increased negative charge density in the carboxyl group. This augmentation enhances electrostatic repulsion and facilitates the formation of hydration layer. This leads to exceptional prevention of blood clotting factor adhesion and inhibition of biofilm formation. Subsequently, the ZW@CMC hydrogel exhibited biocompatibility with tests of in vitro cytotoxicity, hemolysis, and catheter friction. Furthermore, in vivo tests of antithrombotic and systemic inflammation models with catheterization indicated that ZW@CMC has significant advantages for practical applications in cardiovascular-related and sepsis treatment. This study opens a new avenue for the development of chitosan-based multifunctional hydrogel for applications in blood-contacting devices.

9.
Integr Zool ; 2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-38185804

RESUMEN

The hibernation of amphibians can offer a unique window into overwintering adaptation processes and host-gut microbiota interactions through changes in metabolic availability and homeostasis. We attempted to identify differences in the physiology and gut microbiome during and after hibernation in Japanese wrinkled frogs (Glandirana rugosa), an aquatic overwintering amphibian. After hibernation, the high alpha and beta diversity of the gut bacterial community appears to reflect the more diverse and complex environmental conditions. During winter, Proteobacteria dominated the majority of the gut bacterial community, likely due to high oxygen saturation. After hibernation, Firmicutes and Bacteroidetes increased, which are supportive of host metabolism by gut microbiota. Corticosterone also showed high values and variances after hibernation, presumably allowing the population to remain adaptable across a broad range of environmental gradients. Innate immunity was high after hibernation but exhibited low variation among populations, which supports the idea of a prioritized investment in immunity after hibernation. Blood biochemistry suggests that aquatic overwintering frogs have a mechanism to adapt through overhydration and regulate homeostasis through water excretion associated with the kidney and urine after hibernation. Frog populations exhibit variations and adaptability in gut microbiota and physiology during and after hibernation: Through this, they may demonstrate an adaptive response that regulates metabolic availability in preparation for unpredictable environmental changes. We also propose that the maintenance of Proteobacteria during hibernation can support the colonization of Firmicutes and Bacteroidetes after hibernation, underscoring the need to study the complex effects of gut microbiota across multiple life stages.

10.
Tissue Eng Regen Med ; 21(1): 53-64, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37973692

RESUMEN

BACKGROUND: Current polymer-based drug-eluting stents (DESs) have fundamental issues about inflammation and delayed re-endothelializaton of the vessel wall. Substance-P (SP), which plays an important role in inflammation and endothelial cells, has not yet been applied to coronary stents. Therefore, this study compares poly lactic-co-glycolic acid (PLGA)-based everolimus-eluting stents (PLGA-EESs) versus 2-methacryloyloxyethyl phosphorylcholine (MPC)-based SP-eluting stents (MPC-SPs) in in-vitro and in-vivo models. METHODS: The morphology of the stent surface and peptide/drug release kinetics from stents were evaluated. The in-vitro proliferative effect of SP released from MPC-SP is evaluated using human umbilical vein endothelial cell. Finally, the safety and efficacy of the stent are evaluated after inserting it into a pig's coronary artery. RESULTS: Similar to PLGA-EES, MPC-SP had a uniform surface morphology with very thin coating layer thickness (2.074 µm). MPC-SP showed sustained drug release of SP for over 2 weeks. Endothelial cell proliferation was significantly increased in groups treated with SP (n = 3) compared with the control (n = 3) and those with everolimus (n = 3) (SP: 118.9 ± 7.61% vs. everolimus: 64.3 ± 12.37% vs. the control: 100 ± 6.64%, p < 0.05). In the animal study, the percent stenosis was higher in MPC-SP group (n = 7) compared to PLGA-EES group (n = 7) (MPC-SP: 28.6 ± 10.7% vs. PLGA-EES: 16.7 ± 6.3%, p < 0.05). MPC-SP group showed, however, lower inflammation (MPC-SP: 0.3 ± 0.26 vs. PLGA-EES: 1.2 ± 0.48, p < 0.05) and fibrin deposition (MPC-SP: 1.0 ± 0.73 vs. PLGA-EES: 1.5 ± 0.59, p < 0.05) around the stent strut. MPC-SP showed more increased expression of cluster of differentiation 31, suggesting enhanced re-endothelialization. CONCLUSION: Compared to PLGA-EES, MPC-SP demonstrated more decreased inflammation of the vascular wall and enhanced re-endothelialization and stent coverage. Hence, MPC-SP has the potential therapeutic benefits for the treatment of coronary artery disease by solving limitations of currently available DESs.


Asunto(s)
Reestenosis Coronaria , Stents Liberadores de Fármacos , Intervención Coronaria Percutánea , Porcinos , Humanos , Animales , Everolimus/farmacología , Sustancia P , Vasos Coronarios , Stents , Inflamación , Células Endoteliales de la Vena Umbilical Humana
11.
Mol Med Rep ; 29(2)2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38131179

RESUMEN

Drynaria rhizome is a herbal medicine used for strengthening bones and treating bone diseases in East Asia. Although obesity is considered to benefit bone formation, it has been revealed that visceral fat accumulation can promote osteoporosis. Given the complex relationship between bone metabolism and obesity, bone­strengthening medicines should be evaluated while considering the effects of obesity. The present study investigated the effects of Drynaria rhizome extract (DRE) on high­fat diet (HFD)­induced obese mice. DRE was supplemented with the HFD. Body weight, food intake, the expression levels of lipogenesis transcription factors, including sterol regulatory element binding protein (SREBP)­1, peroxisome proliferator­activated receptor (PPAR)­Î³ and adenosine monophosphate­activated protein kinase (AMPK)­α, and AMPK activation were evaluated. Mice fed DRE and a HFD exhibited reduced body weight without differences in food intake compared with those in the HFD group. Furthermore, DRE; upregulated AMPK­α of epididymal one; down­regulated SREBP­1 and PPAR­Î³, as determined using western blotting and quantitative polymerase chain reaction, respectively. Decreased lipid accumulation were observed in both fat pad and liver of HFD­fed mice, which were suppressed by DRE treatment. These results demonstrated the potential of DRE as a dietary natural product for strengthening bones and managing obesity.


Asunto(s)
Fármacos Antiobesidad , Dieta Alta en Grasa , Ratones , Animales , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Dieta Alta en Grasa/efectos adversos , Proteínas Quinasas Activadas por AMP/metabolismo , Receptores Activados del Proliferador del Peroxisoma , Rizoma , Extractos Vegetales/farmacología , Obesidad/tratamiento farmacológico , Obesidad/etiología , Obesidad/metabolismo , Peso Corporal , Ratones Endogámicos C57BL , Fármacos Antiobesidad/farmacología , Ratones Obesos
12.
Sensors (Basel) ; 23(24)2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38139599

RESUMEN

This paper proposes fault diagnosis methods aimed at proactively preventing potential safety issues in robot systems, particularly human coexistence robots (HCRs) used in industrial environments. The data were collected from durability tests of the driving module for HCRs, gathering time-series vibration data until the module failed. In this study, to apply classification methods in the absence of post-failure data, the initial 50% of the collected data were designated as the normal section, and the data from the 10 h immediately preceding the failure were selected as the fault section. To generate additional data for the limited fault dataset, the Wasserstein generative adversarial networks with gradient penalty (WGAN-GP) model was utilized and residual connections were added to the generator to maintain the basic structure while preventing the loss of key features of the data. Considering that the performance of image encoding techniques varies depending on the dataset type, this study applied and compared five image encoding methods and four CNN models to facilitate the selection of the most suitable algorithm. The time-series data were converted into image data using image encoding techniques including recurrence plot, Gramian angular field, Markov transition field, spectrogram, and scalogram. These images were then applied to CNN models, including VGGNet, GoogleNet, ResNet, and DenseNet, to calculate the accuracy of fault diagnosis and compare the performance of each model. The experimental results demonstrated significant improvements in diagnostic accuracy when employing the WGAN-GP model to generate fault data, and among the image encoding techniques and convolutional neural network models, spectrogram and DenseNet exhibited superior performance, respectively.

13.
Nutrients ; 15(21)2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37960162

RESUMEN

Hypertension requires proper management because of the increased risk of cardiovascular disease and death. For this purpose, functional foods containing tannins have been considered an effective treatment. Sanguisorbae radix (SR) also contains various tannins; however, there have been no studies on its vasorelaxant or antihypertensive effects. In this study, the vasorelaxant effect of the ethanol extract of SR (SRE) was investigated in the thoracic aorta of Sprague Dawley rats. SRE (1, 3, 10, 30, and 100 µg/mL) showed this effect in a dose-dependent manner, and its mechanisms were related to the NO/cGMP pathway and voltage-gated K+ channels. Concentrations of 300 and 1000 µg/mL blocked the influx of extracellular Ca2+ and inhibited vasoconstriction. Moreover, 100 µg/mL of SRE showed a relaxing effect on blood vessels constricted by angiotensin II. The hypotensive effect of SRE was investigated in spontaneously hypertensive rats (SHR) using the tail-cuff method. Blood pressure significantly decreased 4 and 8 h after 1000 mg/kg of SRE administration. Considering these hypotensive effects and the vasorelaxant mechanisms of SRE, our findings suggests that SRE can be used as a functional food to prevent and treat hypertension. Further studies are needed for identifying the active components and determining the optimal dosage.


Asunto(s)
Hipertensión , Vasodilatadores , Ratas , Animales , Ratas Sprague-Dawley , Etanol/farmacología , Extractos Vegetales , Vasodilatación , Antihipertensivos/uso terapéutico , Presión Sanguínea , Ratas Endogámicas SHR , Taninos/farmacología , Aorta Torácica
14.
PLoS One ; 18(10): e0292521, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37796877

RESUMEN

Tadpoles present an intriguing model system for studying the regulation and selection of gut microbiota. They offer a unique perspective to enhance our understanding of host-microbiota interactions, given their capacity to alter the dynamics of the gut microbial community by interacting with multiple environmental factors within a complex life cycle. In this study, we comprehensively investigated variations in growth rate and gut bacterial community in relation to temperature differences during the complex process of amphibian metamorphosis. Higher temperatures prompted tadpoles to metamorphose more rapidly than at lower temperatures, but the impact on size and weight was minimal. Differences in temperature were not associated with gut bacterial diversity, but they did affect certain aspects of beta diversity and bacterial composition. However, the developmental stage invoked greater heterogeneity than temperature in gut bacterial diversity, composition, and functional groups. These findings suggest that inherent biological systems exert stronger control over an organism's homeostasis and variation than the external environment. Although results may vary based on the magnitude or type of environmental factors, metamorphosis in tadpoles greatly influences their biology, potentially dominating microbial interactions.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Larva , Temperatura , Anuros/microbiología , Bacterias/genética
15.
Animals (Basel) ; 13(20)2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37893886

RESUMEN

Analysis of physiological responses can be used to assess population health, identify threat factors, and understand mechanisms of stress. In addition to this, conservation physiologists have sought to establish potential management strategies for environmental change and evaluate the effectiveness of conservation efforts. From past to present, the field of conservation physiology is developing in an increasingly broader context. In this review, we aim to categorize the topics covered in conservation physiology research on amphibians and present the measured physiological parameters to provide directions for future research on conservation physiology. Physiological responses of amphibians to environmental stressors are the most studied topic, but conservation physiological studies on metamorphosis, habitat loss and fragmentation, climate change, and conservation methods are relatively lacking. A number of physiological indices have been extracted to study amphibian conservation physiology, and the indices have varying strengths of correlation with each subject. Future research directions are suggested to develop a comprehensive monitoring method for amphibians, identify interactions among various stressors, establish physiological mechanisms for environmental factors, and quantify the effects of conservation activities on amphibian physiology.

16.
Pest Manag Sci ; 79(12): 5180-5185, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37575071

RESUMEN

BACKGROUND: Invasive species such as the yellow-legged hornet (Vespa velutina), along with four other Vespa species - Vespa analis, Vespa crabro, Vespa ducalis, and Vespa mandarinia - pose significant threats to the environment, economy, and human health. This study focuses on understanding the key factors contributing to the successful invasion of these species, particularly V. velutina, in South Korea. The analysis encompasses the gut bacterial communities and stable isotopes of carbon and nitrogen of the queen hornets, aiming to identify variances in gut microbial composition and food resource utilization. RESULTS: The gut bacterial communities in the five Vespa species were primarily composed of Proteobacteria, with Firmicutes and Bacteroidetes present. Vespa velutina and V. mandarinia had higher Firmicutes abundance at the phylum level, possibly indicating an increased capacity for dietary fiber breakdown and short-chain fatty acid production, providing them with a competitive edge. No significant differences in nitrogen and carbon stable isotope values were found among the five Vespa species, suggesting that they fed on similar food sources. However, V. velutina had a higher number of unique gut bacterial operational taxonomic units (OTUs), implying adaptation through the acquisition of a distinct gut bacterial set. Significant correlations were found between the observed index and the Shannon index, and between δ15 N and the observed index, suggesting that the food source diversity may influence the gut bacterial community diversity. CONCLUSION: Our study offered valuable insights regarding the adaptation of V. velutina to its new environment in South Korea. The potential role of gut microbiota in the success of invasive species was elucidated. This information is crucial for the management of invasive species, targeted control methods, and implementing preventive regulations. Further studies with larger sample sizes and comprehensive sampling are required to gain a complete understanding of the gut microbiota of Vespa species and their adaptation to new environments. © 2023 Society of Chemical Industry.


Asunto(s)
Microbioma Gastrointestinal , Avispas , Animales , Humanos , Bacterias , República de Corea , Especies Introducidas , Carbono , Nitrógeno
17.
Animals (Basel) ; 13(10)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37238042

RESUMEN

The calling behavior of anurans should be studied in detail as it greatly influences their physiology and immunity, particularly in prolonged breeding species. The effect can be further complicated by the emergence timing in the breeding season. We conducted a study comparing the physiology and calling behavior of the Japanese tree frog (Dryophytes japonicus), a prolonged breeder species, according to the breeding timing. During the middle of the breeding season, a high chorus size appeared, indicating a breeding peak. However, chorus size did not dominate physiology and calling behavior. In the early breeding season, frogs had a high energy storage state and immunity. In the middle of the breeding season, individuals from the early breeding season were considered to have exhausted their energy stores and had low immunity. Towards the end of the breeding season, frogs appeared to have newly introduced, at which time energy stores and immunity were as high as in the beginning. However, unlike the physiology, the pattern of calling constantly varied as the breeding season progressed. Frogs from the early season conserved energy used for calling, and frogs from the late season showed a breeding spurt for mating. Our results can help in understanding the energy metabolism of calling behavior, physiology, and disease epidemiology in prolonged breeder species. They also suggest that individuals coordinate their participation in the breeding season and that the timing of their appearance at breeding sites may not be random.

18.
Tissue Eng Regen Med ; 20(2): 239-249, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36881249

RESUMEN

BACKGROUND: Biodegradable poly (l-lactic acid) (PLLA), a bio safe polymer with a large elastic modulus, is widely used in biodegradable medical devices. However, because of its poor mechanical properties, a PLLA strut must be made twice as thick as a metal strut for adequate blood vessel support. Therefore, the mechanical properties of a drug-eluting metal-based stents (MBS) and a bioresorbable vascular scaffolds (BVS) were evaluated and their safety and efficacy were examined via a long-term rabbit iliac artery model. METHODS: The surface morphologies of the MBSs and BVSs were investigated via optical and scanning electron microscopy. An everolimus-eluting (EE) BVS or an EE-MBS was implanted into rabbit iliac arteries at a 1.1:1 stent-to-artery ratio. Twelve months afterward, stented iliac arteries from each group were analyzed via X-ray angiography, optical coherence tomography (OCT), and histopathologic evaluation. RESULTS: Surface morphology analysis of the EE coating on the MBS confirmed that it was uniform and very thin (4.7 µm). Comparison of the mechanical properties of the EE-MBS and EE-BVS showed that the latter outperformed the former in all aspects (radial force (2.75 vs. 0.162 N/mm), foreshortening (0.24% vs. 1.9%), flexibility (0.52 vs. 0.19 N), and recoil (3.2% vs. 6.3%). At all time points, the percent area restenosis was increased in the EE-BVS group compared to the EE-MBS group. The OCT and histopathological analyses indicate no significant changes in strut thickness. CONCLUSION: BVSs with thinner struts and shorter resorption times should be developed. A comparable long-term safety/efficacy evaluation after complete absorption of BVSs should be conducted.


Asunto(s)
Stents Liberadores de Fármacos , Everolimus , Animales , Conejos , Arteria Ilíaca , Implantes Absorbibles , Angiografía Coronaria/métodos
19.
Biology (Basel) ; 12(3)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36979033

RESUMEN

Anuran species can respond to environmental changes via phenotypic plasticity, which can also result in ecological impacts across the life history of such species. We investigated the effects of predation pressure (i.e., the non-consumption effect) from the dragonfly larva (Anax parthenope) on the phenotypical change of tadpoles into juvenile frogs (specifically the black-spotted pond frog, Pelophylax nigromaculatus), and also analyzed the impact of morphological changes on locomotory performance after metamorphosis. The experiments on predator impact were conducted in the laboratory. Body length, weight, development timing, and metamorphosis timing in the presence of dragonfly nymphs were measured in both tadpoles and juvenile frogs. The body and tail shapes of the tadpoles, as well as the skeletal shape of the juvenile frogs, were analyzed using landmark-based geometric morphometrics. Furthermore, the locomotory performance of the juvenile frogs was tested by measuring their jumping and swimming speeds. Tadpoles that had grown with predators possessed smaller bodies, deeper tail fins, and slower development rates, and they waited longer periods of time before commencing metamorphosis. Having said this, however, the effect of predator cues on the body length and weight of juvenile frogs was not found to be significant. These juvenile frogs possessed longer limbs and narrower skulls, with subtle morphological changes in the pelvis and ilium, but there was no subsequent difference in their swimming and jumping speeds. Our results showed that the changes in anatomical traits that can affect locomotor performance are so subtle that they do not affect the jumping or swimming speeds. Therefore, we support the view that these morphological changes are thus by-products of an altered tadpole period, rather than an adaptive response to predator-escape ability or to post-metamorphosis life history. On the other hand, delayed metamorphosis, without an increase in body size, may still be disadvantageous to the reproduction, growth, and survival of frogs in their life history following metamorphosis.

20.
Sensors (Basel) ; 23(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36679434

RESUMEN

Laboratory-scale data on a component level are frequently used for prognostics because acquiring them is time and cost efficient. However, they do not reflect actual field conditions. As prognostics is for an in-service system, the developed prognostic methods must be validated using real operational data obtained from an actual system. Because obtaining real operational data is much more expensive than obtaining test-level data, studies employing field data are scarce. In this study, a prognostic method for screws was presented by employing multi-source real operational data obtained from a micro-extrusion system. The analysis of real operational data is more challenging than that of test-level data because the mutual effect of each component in the system is chaotically reflected in the former. This paper presents a degradation feature extraction method for interpreting complex signals for a real extrusion system based on the physical and mechanical properties of the system as well as operational data. The data were analyzed based on general physical properties and the inferred interpretation was verified using the data. The extracted feature exhibits valid degradation behavior and is used to predict the remaining useful life of the screw in a real extrusion system.


Asunto(s)
Tornillos Óseos , Pronóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...