Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Int J Mol Sci ; 25(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38673975

RESUMEN

Previously, we reported that epidermal growth factor-like module-containing mucin-like hormone receptor-like 1 (EMR1/ADGRE1) is abnormally expressed in colon cancer (CC) and is a risk factor for lymph node metastasis (LNM) and poor recurrence-free survival in patients with abundant tumor-associated macrophages (TAMs). However, the signaling pathways associated with EMR1 expression in CC progression remain unclear. In this study, we aimed to explore the role of EMR1 and its signaling interactions with macrophages in CC progression. Spatial transcriptomics of pT3 microsatellite unstable CC tissues revealed heightened Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling in EMR1-HL CC with LNM compared to EMR1-N CC without LNM. Through in vitro coculture of CC cells with macrophages, EMR1 expression by CC cells was found to be induced by TAMs, ultimately interacting with upregulated JAK/STAT signaling, increasing cell proliferation, migration, and motility, and reducing apoptosis. JAK2/STAT3 inhibition decreased the levels of EMR1, JAK2, STAT1, and STAT3, significantly impeded the proliferation, migration, and mobility of cells, and increased the apoptosis of EMR1+ CC cells compared to their EMR1KO counterparts. Overall, TAMs-induced EMR1 upregulation in CC cells may promote LNM and CC progression via JAK2/STAT1,3 signaling upregulation. This study provides further insights into the molecular mechanisms involving macrophages and intracellular EMR1 expression in CC progression, suggesting its clinical significance and offering potential interventions to enhance patient outcomes.


Asunto(s)
Neoplasias del Colon , Janus Quinasa 2 , Transducción de Señal , Macrófagos Asociados a Tumores , Humanos , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/patología , Janus Quinasa 2/metabolismo , Janus Quinasa 2/genética , Neoplasias del Colon/patología , Neoplasias del Colon/metabolismo , Neoplasias del Colon/genética , Regulación Neoplásica de la Expresión Génica , Progresión de la Enfermedad , Regulación hacia Arriba , Proliferación Celular , Línea Celular Tumoral , Movimiento Celular/genética , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Apoptosis/genética
2.
Heliyon ; 10(6): e27641, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38500971

RESUMEN

Feline Coronavirus (FCoV) is a viral pathogen of cats and a highly contagious virus. Cats in a cattery can be infected by up to 100%, and even household cats are infected by 20-60%. Some strains of FCoV are known to induce a fatal disease in cats named Feline Infectious Peritonitis (FIP). However, no effective treatments are available. We demonstrated that compound C (dorsomorphin) can potentially inhibit feline coronavirus replication. Compound C treatment decreased the FCoV-induced plaque formation and cytopathic effect in FCoV-infected cells. Compound C treatment also significantly reduced the amount of viral RNA and viral protein in the cells in a dose-dependent manner. Our findings suggest that compound C is potentially useful for feline coronavirus-related diseases.

3.
Pharmaceutics ; 16(2)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38399233

RESUMEN

A high-payload ascorbyl palmitate (AP) nanosuspension (NS) was designed to improve skin delivery following topical application. The AP-loaded NS systems were prepared using the bead-milling technique, and softly thickened into NS-loaded gel (NS-G) using hydrophilic polymers. The optimized NS-G system consisted of up to 75 mg/mL of AP, 0.5% w/v of polyoxyl-40 hydrogenated castor oil (Kolliphor® RH40) as the suspending agent, and 1.0% w/v of sodium carboxymethyl cellulose (Na.CMC 700 K) as the thickening agent, in citrate buffer (pH 4.5). The NS-G system was embodied as follows: long and flaky nanocrystals, 493.2 nm in size, -48.7 mV in zeta potential, and 2.3 cP of viscosity with a shear rate of 100 s-1. Both NS and NS-G provided rapid dissolution of the poorly water-soluble antioxidant, which was comparable to that of the microemulsion gel (ME-G) containing AP in solubilized form. In an ex vivo skin absorption study using the Franz diffusion cell mounted on porcine skin, NS-G exhibited faster absorption in skin, providing approximately 4, 3, and 1.4 times larger accumulation than that of ME-G at 3, 6, and 12 h, respectively. Therefore, the high-payload NS makes it a promising platform for skin delivery of the lipid derivative of ascorbic acid.

4.
PLoS One ; 18(10): e0292309, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37788269

RESUMEN

The coronavirus disease (COVID-19) pandemic has resulted in more than six million deaths by October 2022. Vaccines and antivirals for severe acute respiratory syndrome coronavirus 2 are now available; however, more effective antiviral drugs are required for effective treatment. Here, we report that a potent AMP-activated protein kinase (AMPK) inhibitor, compound C/dorsomorphin, inhibits the replication of the human coronavirus OC43 strain (HCoV-OC43). We examined HCoV-OC43 replication in control and AMPK-knockout (KO) cells and found that the virus replication decreased in AMPK-KO cells. Next, we examined the effect of the AMPK inhibitor, compound C on coronavirus replication. Compound C treatment efficiently inhibited the replication and decreased the coronavirus-induced cytotoxicity, further inhibiting autophagy. In addition, treatment with compound C in combination with chloroquine synergistically inhibited coronavirus replication. These results suggest that compound C can be considered as a potential drug candidate for COVID-19.


Asunto(s)
Antivirales , Coronavirus Humano OC43 , Humanos , Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Antivirales/farmacología , Coronavirus Humano OC43/efectos de los fármacos , Pirazoles/farmacología , Replicación Viral/efectos de los fármacos
5.
J Enzyme Inhib Med Chem ; 38(1): 2242704, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37537881

RESUMEN

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). 3CLpro is a key enzyme in coronavirus proliferation and a treatment target for COVID-19. In vitro and in silico, compounds 1-3 from Glycyrrhiza uralensis had inhibitory activity and binding affinity for 3CLpro. These compounds decreased HCoV-OC43 cytotoxicity in RD cells. Moreover, they inhibited viral growth by reducing the amounts of the necessary proteins (M, N, and RDRP). Therefore, compounds 1-3 are inhibitors of 3CLpro and HCoV-OC43 proliferation.


Asunto(s)
Proteasas 3C de Coronavirus , Coronavirus Humano OC43 , Glycyrrhiza uralensis , Proliferación Celular , Coronavirus Humano OC43/efectos de los fármacos , Glycyrrhiza uralensis/química , SARS-CoV-2 , Proteasas 3C de Coronavirus/antagonistas & inhibidores
6.
Viruses ; 15(7)2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37515175

RESUMEN

Astroviruses (AstVs) have been detected in a wide range of animal species, including mammals and birds. Recently, a novel AstV associated with neurological symptoms has been detected in the brains of some mammals. Raccoon dog AstV has been reported recently in China. However, there have been no reports in South Korea. Therefore, the present study aimed to detect and genetically characterize AstVs in the intestine and brain tissues of 133 wild raccoon dogs collected in Korea between 2017 and 2019. Of the seven raccoon dogs, AstVs were detected in six intestinal tissues and four brain tissues. Analysis of the capsid protein amino acid sequences of raccoon dog AstVs detected in Korea revealed a high similarity to canine AstVs, suggesting possible interspecies transmission between raccoon dogs and dogs. Phylogenetic and capsid protein amino acid sequence analysis of raccoon dog AstVs detected in the brain the 17-148B strain belonging to the HMO clade and exhibiting conserved sequences found in neurotropic AstVs (NT-AstVs), indicating their potential as NT-AstVs. However, the pathogenicity and transmission routes of the raccoon dog AstV detected in Korea have not yet been elucidated, so further research and continued surveillance for AstV in wild raccoon dogs are needed.


Asunto(s)
Infecciones por Astroviridae , Astroviridae , Animales , Perros , Filogenia , Perros Mapache , Proteínas de la Cápside/genética , Astroviridae/genética
7.
Int J Mol Sci ; 24(11)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37298159

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic has caused more than six million deaths worldwide since 2019. Although vaccines are available, novel variants of coronavirus are expected to appear continuously, and there is a need for a more effective remedy for coronavirus disease. In this report, we isolated eupatin from Inula japonica flowers and showed that it inhibits the coronavirus 3 chymotrypsin-like (3CL) protease as well as viral replication. We showed that eupatin treatment inhibits SARS-CoV-2 3CL-protease, and computational modeling demonstrated that it interacts with key residues of 3CL-protease. Further, the treatment decreased the number of plaques formed by human coronavirus OC43 (HCoV-OC43) infection and decreased viral protein and RNA levels in the media. These results indicate that eupatin inhibits coronavirus replication.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Péptido Hidrolasas , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Flavonoides/farmacología , Endopeptidasas , Antivirales/farmacología
8.
J Ginseng Res ; 47(2): 337-346, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36926607

RESUMEN

Background: Ginsenoside Rb2, a major active component of Panax ginseng, has various physiological activities, including anticancer and anti-inflammatory effects. However, the mechanisms underlying the rejuvenation effect of Rb2 in human skin cells have not been elucidated. Methods: We performed a senescence-associated ß-galactosidase staining assay to confirm cellular senescence in human dermal fibroblasts (HDFs). The regulatory effects of Rb2 on autophagy were evaluated by analyzing the expression of autophagy marker proteins, such as microtubule-associated protein 1A/1B-light chain (LC) 3 and p62, using immunoblotting. Autophagosome and autolysosome formation was monitored using transmission electron microscopy. Autophagic flux was analyzed using tandem-labeled GFP-RFP-LC3, and lysosomal function was assessed with Lysotracker. We performed RNA sequencing to identify potential target genes related to HDF rejuvenation mediated by Rb2. To verify the functions of the target genes, we silenced them using shRNAs. Results: Rb2 decreased ß-galactosidase activity and altered the expression of cell cycle regulatory proteins in senescent HDFs. Rb2 markedly induced the conversion of LC3-Ⅰ to LC3-Ⅱ and LC3 puncta. Moreover, Rb2 increased lysosomal function and red puncta in tandem-labeled GFP-RFP-LC3, which indicate that Rb2 promoted autophagic flux. RNA sequencing data showed that the expression of DNA damage-regulated autophagy modulator 2 (DRAM2) was induced by Rb2. In autophagy signaling, Rb2 activated the AMPK-ULK1 pathway and inactivated mTOR. DRAM2 knockdown inhibited autophagy and Rb2-restored cellular senescence. Conclusion: Rb2 reverses cellular senescence by activating autophagy via the AMPK-mTOR pathway and induction of DRAM2, suggesting that Rb2 might have potential value as an antiaging agent.

9.
Life (Basel) ; 13(3)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36984007

RESUMEN

In spite of the development of numerous vaccines for the prevention of COVID-19 and the approval of several drugs for its treatment, there is still a great need for effective and inexpensive therapies against this disease. Previously, we showed that green tea and tea catechins interfere with coronavirus replication as well as coronavirus 3CL protease activity, and also showed lower COVID-19 morbidity and mortality in countries with higher green tea consumption. However, it is not clear whether green tea is still effective against the newer SARS-CoV-2 variants including omicron. It is also not known whether higher green tea consumption continues to contribute to lower COVID-19 morbidity and mortality now that vaccination rates in many countries are high. Here, we attempted to update the information regarding green tea in relation to COVID-19. Using pharmacological and ecological approaches, we found that EGCG as well as green tea inhibit the activity of the omicron variant 3CL protease efficiently, and there continues to be pronounced differences in COVID-19 morbidity and mortality between groups of countries with high and low green tea consumption as of December 6, 2022. These results collectively suggest that green tea continues to be effective against COVID-19 despite the new omicron variants and increased vaccination.

10.
Appl Microbiol Biotechnol ; 107(9): 2855-2870, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36947192

RESUMEN

Polyamines such as putrescine (PUT), spermidine (SPD), and spermine (SPM) are amine group-containing biomolecules that regulate multiple intracellular functions such as proliferation, differentiation, and stress response in mammalian cells. Although these biomolecules can be generated intracellularly, lack of polyamine-synthesizing activity has occasionally been reported in a few mammalian cell lines such as Chinese hamster ovary (CHO)-K1; thus, polyamine supplementation in serum-free media is required to support cell growth and production. In the present study, the effects of biogenic polyamines PUT, SPD, and SPM in media on cell growth, production, metabolism, and antibody quality were explored in cultures of antibody-producing CHO-K1 cells. Polyamine withdrawal from media significantly suppressed cell growth and production. On the other hand, enhanced culture performance was achieved in polyamine-containing media conditions in a dose-dependent manner regardless of polyamine type. In addition, in polyamine-deprived medium, distinguishing metabolic features, such as enriched glycolysis and suppressed amino acid consumption, were observed and accompanied by higher heterogeneity of antibody quality compared with the optimal concentration of polyamines. Furthermore, an excessive concentration of polyamines negatively affected culture performance as well as antibody quality. Hence, the results suggest that polyamine-related metabolism needs to be further investigated and polyamines in cell growth media should be optimized as a controllable parameter in CHO cell culture bioprocessing. KEY POINTS: • Polyamine supplementation enhanced cell growth and production in a dose-dependent manner • Polyamine type and concentration in the media affected mAb quality • Optimizing polyamines in the media is suggested in CHO cell bioprocessing.


Asunto(s)
Poliaminas , Espermidina , Cricetinae , Animales , Poliaminas/farmacología , Poliaminas/metabolismo , Células CHO , Cricetulus , Espermidina/metabolismo , Putrescina/farmacología , Putrescina/metabolismo , Espermina/metabolismo , Espermina/farmacología , Proliferación Celular
11.
Vet Sci ; 9(11)2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36356068

RESUMEN

Adenovirus has been detected in a wide range of hosts like dogs, foxes, horses, bats, avian animals, and raccoon dogs. Canine adenoviruses with two serotypes host mammals and are members of the mastadenovirus family. Canine adenovirus type 1 (CAdV-1) and canine adenovirus type 2 (CAdV-2) cause infectious canine hepatitis and infectious bronchial disease, respectively. In this study, we investigated the prevalence of CAdV-1 and 2 in wild Nyctereutes procyonoides in Korea in 2017-2020 from 414 tissue samples, including the liver, kidney, lung, and intestine, collected from 105 raccoon dog carcasses. Only CAdV-2 was detected in two raccoon dogs, whereas CAdV-1 was not detected. Tissue samples from raccoon dogs were screened for CAdV-1 and CAdV-2 using conventional PCR. Adenovirus was successfully isolated from PCR positive samples using the Vero cell line, and the full-length gene sequence of the isolated viruses was obtained through 5' and 3' rapid amplification of cDNA ends (RACE). The major genes of the isolated CAdV-2/18Ra54 and CAdV-2/18Ra-65 strains showed the closest relationship with that of the CAdV-2 Toronto A26/61 strain isolated from Canada in 1976. There is no large mutation between CAdV-2, which is prevalent worldwide, and CAdV-2, which is prevalent in wild animals in Korea. In addition, it is still spreading and causing infections. The Toronto A26/61 strain, which showed the most similarity to CAdV-2/18Ra-54, was likely transmitted to wild animals through vaccinated companion animals, suggesting that further research is needed on safety measures surrounding animal vaccination. This study provides information on the genetic characteristics and prevalence of canine adenovirus in domestic wild animals and provides a better understanding of canine adenovirus.

12.
Int J Biol Macromol ; 222(Pt B): 2098-2104, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36208809

RESUMEN

In our ongoing efforts to identify effective natural antiviral agents, four methoxy flavonoids (1-4) were isolated from the Inula britannica flower extract. Their structures were elucidated using nuclear magnetic resonance. Flavonoids 1-4 exhibited inhibitory activity against SARS- CoV-2 3CLpro with IC50 values of 41.6 ± 2.5, 35.9 ± 0.9, 32.8 ± 1.2, and 96.6 ± 3.4 µM, respectively. Flavonoids 1-3 inhibited 3CLpro in a competitive manner. Based on molecular simulations, key amino acids that form hydrogen bond with inhibitor 3 were identified. Finally, we found that inhibitors (1-3) suppressed HCoV-OC43 coronavirus proliferation at micromole concentrations.


Asunto(s)
COVID-19 , Inula , SARS-CoV-2 , Inula/química , Flavonoides/farmacología , Flavonoides/química , Flores , Antivirales/farmacología , Antivirales/química
13.
Cancers (Basel) ; 14(18)2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36139655

RESUMEN

C1q and TNF-related 1 (C1QTNF1/CTRP1) is an adiponectin-associated protein belonging to the C1q/TNF-related protein family. Recent studies have shown that the C1q and TNF-related protein (CTRP) family is involved in cancer progression; however, the specific role of CTRP1 in tumor progression has not yet been elucidated. To examine the role of CTRP1 in tumor progression, we generated CTRP1 knockout A549 and HCT116 cell lines, which reduced the expression levels of nuclear factor (NF)-κB-dependent and metastasis-promoting transcripts. We demonstrated that CTRP1 knockout inhibited the cell proliferation and invasion and tumor growth. Finally, database analysis showed that CTRP1 expression was upregulated in metastatic cancers and elevated levels of CTRP1 were associated with poor prognosis. These results suggest that CTRP1 expression contributes to NF-κB signaling and promotes tumor progression.

14.
Biomedicines ; 10(8)2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-36009429

RESUMEN

Since its discovery in circulating blood seven decades ago, cell-free DNA (cfDNA) has become a highly focused subject in cancer management using liquid biopsy. Despite its clinical utility, the extraction of cfDNA from blood has many technical difficulties, including a low efficiency of recovery and long processing times. We introduced a magnetic bead-based cfDNA extraction method using homobifunctional crosslinkers, including dimethyl suberimidate dihydrochloride (DMS). Owing to its bifunctional nature, DMS can bind to DNA through either covalent or electrostatic bonding. By adopting amine-conjugated magnetic beads, DMS-DNA complexes can be rapidly isolated from blood plasma. Using standard washing and eluting processes, we successfully extracted cfDNA from plasma within 10 min. This method yielded a 56% higher extraction efficiency than that of a commercial product (QIAamp kit). Furthermore, the instant binding mechanism of amine coupling between the microbeads and DMS-DNA complexes significantly reduced the processing time. These results highlight the potential of this magnetic bead-based homobifunctional crosslinker platform for extraction of cfDNA from blood plasma.

15.
Diagnostics (Basel) ; 12(8)2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36010344

RESUMEN

The complex and lengthy protocol of current viral nucleic acid extraction processes limits their use outside laboratory settings. Here, we describe a rapid and reliable method for extracting nucleic acids from viral samples using a rotating blade and magnetic beads. The viral membrane can be instantly lysed using a high-speed rotating blade, and nucleic acids can be immediately isolated using a silica magnetic surface. The process was completed within 60 s by this method. Routine washing and eluting processes were subsequently conducted within 5 min. The results achieved by this method were comparable to those of a commercially available method. When the blade-based lysis and magnetic bead adsorption processes were performed separately, the RNA recovery rate was very low, and the Ct value was delayed compared to simultaneous lysis and RNA adsorption. Overall, this method not only dramatically shortens the conventional extraction time but also allows for its convenient use outside the laboratory, such as at remote field sites and for point-of-care testing.

16.
PLoS One ; 17(8): e0270765, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35980889

RESUMEN

Face masks are used to protect the wearer from harmful external air and to prevent transmission of viruses from air exhaled by potentially infected wearers to the surrounding people. In this study, we examined the potential utility of masks for collecting viruses contained in exhaled breath and detected the collected viruses via various molecular tests. Using KF94 masks, the inner electrostatic filter was selected for virus collection, and an RNA extraction protocol was developed for the face mask. Virus detection in worn mask samples was performed using PCR and rolling circle amplification (RCA) tests and four different target genes (N, E, RdRp, and ORF1ab genes). The present study confirmed that the mask sample tests showed positive SARS-CoV-2 results, similar to the PCR tests using nasopharyngeal swab samples. In addition, the quantity of nucleic acid collected in the masks linearly increased with wearing time. These results suggest that samples for SARS-CoV-2 tests can be collected in a noninvasive, quick, and easy method by simply submitting worn masks from subjects, which can significantly reduce the hassle of waiting at airports or public places and concerns about cross-infection. In addition, it is expected that miniaturization technology will integrate PCR assays on face masks in the near future, and mask-based self-diagnosis would play a significant role in resolving the pandemic situation.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Espiración , Humanos , Máscaras , Pandemias/prevención & control , SARS-CoV-2/genética
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 278: 121333, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-35537263

RESUMEN

A probe with an isothiocyanate group was synthesized and evaluated for its H2S sensing ability. Upon addition of H2S, the probe exhibited ratiometric properties during absorption with a red-shift. The probe exhibited fluorescent off-on responses towards H2S via the ESIPT process, due to the conversion of isocyanate into amine. UV-vis, fluorescence, and 1H NMR spectroscopic analyses were performed to investigate the sensing mechanism. The probe has a large Stokes shift, short response time, and low detection limit. It can be used to estimate H2S levels within the range of 0-36 nM. The practical applicability of the probe was demonstrated using water samples and living cells.


Asunto(s)
Colorantes Fluorescentes , Sulfuro de Hidrógeno , Colorantes Fluorescentes/química , Células HeLa , Humanos , Sulfuro de Hidrógeno/análisis , Isotiocianatos , Espectrometría de Fluorescencia
18.
Cancers (Basel) ; 14(4)2022 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-35205672

RESUMEN

Dickkopf-3 (DKK3), a tumor suppressor, is frequently downregulated in various cancers. However, the role of DKK3 in ovarian cancer has not been evaluated. This study aimed to assess aberrant DKK3 expression and its role in epithelial ovarian carcinoma. DKK3 expression was assessed using immunohistochemistry with tissue blocks from 82 patients with invasive carcinoma, and 15 normal, 19 benign, and 10 borderline tumors as controls. Survival data were analyzed using Kaplan-Meier and Cox regression analysis. Paclitaxel-resistant cells were established using TOV-21G and OV-90 cell lines. Protein expression was assessed using Western blotting and immunofluorescence analysis. Cell viability was assessed using the MT assay and 3D-spheroid assay. Cell migration was determined using a migration assay. DKK3 was significantly downregulated in invasive carcinoma compared to that in normal, benign, and borderline tumors. DKK3 loss occurred in 56.1% invasive carcinomas and was significantly associated with disease-free survival and chemoresistance in serous adenocarcinoma. DKK3 was lost in paclitaxel-resistant cells, while ß-catenin and P-glycoprotein were upregulated. Exogenous secreted DKK3, incorporated by cells, enhanced anti-tumoral effect and paclitaxel susceptibility in paclitaxel-resistant cells, and reduced the levels of active ß-catenin and its downstream P-glycoprotein, suggesting that DKK3 can be used as a therapeutic for targeting paclitaxel-resistant cancer.

19.
J Microbiol ; 60(3): 347-354, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35089586

RESUMEN

Coronavirus disease (COVID-19) can cause critical conditions that require efficient therapeutics. Several medicines are derived from plants, and researchers are seeking natural compounds to ameliorate the symptoms of COVID-19. Viral enzymes are popular targets of antiviral medicines; the genome of coronaviruses encodes several enzymes, including RNA-dependent RNA polymerase and viral proteases. Various screening systems have been developed to identify potential inhibitors. In this review, we describe the natural compounds that have been shown to exert inhibitory effects on coronavirus enzymes. Although computer-aided molecular structural studies have predicted several antiviral compound candidates, the current review focuses on experimentally proven natural compounds.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Inhibidores Enzimáticos , Fitoquímicos/farmacología , Inhibidores Enzimáticos/farmacología , Humanos , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología
20.
Viruses ; 13(12)2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34960802

RESUMEN

The COVID-19 pandemic has resulted in a huge number of deaths from 2020 to 2021; however, effective antiviral drugs against SARS-CoV-2 are currently under development. Recent studies have demonstrated that green tea polyphenols, particularly EGCG, inhibit coronavirus enzymes as well as coronavirus replication in vitro. Herein, we examined the inhibitory effect of green tea polyphenols on coronavirus replication in a mouse model. We used epigallocatechin gallate (EGCG) and green tea polyphenols containing more than 60% catechin (GTP60) and human coronavirus OC43 (HCoV-OC43) as a surrogate for SARS-CoV-2. Scanning electron microscopy analysis results showed that HCoV-OC43 infection resulted in virion particle production in infected cells. EGCG and GTP60 treatment reduced coronavirus protein and virus production in the cells. Finally, EGCG- and GTP60-fed mice exhibited reduced levels of coronavirus RNA in mouse lungs. These results demonstrate that green tea polyphenol treatment is effective in decreasing the level of coronavirus in vivo.


Asunto(s)
Antivirales/farmacología , Catequina/análogos & derivados , Infecciones por Coronavirus/tratamiento farmacológico , Polifenoles/farmacología , Té/química , Replicación Viral/efectos de los fármacos , Animales , Antivirales/química , Antivirales/uso terapéutico , Catequina/farmacología , Catequina/uso terapéutico , Línea Celular , Infecciones por Coronavirus/virología , Coronavirus Humano OC43/efectos de los fármacos , Coronavirus Humano OC43/fisiología , Modelos Animales de Enfermedad , Humanos , Ratones , Polifenoles/química , Polifenoles/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...