Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
2.
Bioengineering (Basel) ; 11(1)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38247953

RESUMEN

A flow diverter (FD) is an effective method for treating wide-necked intracranial aneurysms by inducing hemodynamic changes in aneurysms. However, the procedural technique remains challenging, and it is often not performed properly in many cases of deployment or placements. In this study, three types of FDs that changed the material of the wire were prepared within the same structure. Differences in physical properties, such as before and after delivery loading stent size, radial force, and radiopacity, were evaluated. The performances in terms of deployment and trackability force were also evaluated in a simulated model using these FDs. Furthermore, changes of deployment patterns when these FDs were applied to a 3D-printed aneurysm model were determined. The NiTi FD using only nitinol (NiTi) wire showed 100% size recovery and 42% to 45% metal coverage after loading. The low trackability force (10.9 to 22.9 gf) allows smooth movement within the delivery system. However, NiTi FD cannot be used in actual surgeries due to difficulties in X-ray identification. NiTi-Pt/W FD, a combination of NiTi wire and platinum/tungsten (Pt/W) wire, had the highest radiopacity and compression force (6.03 ± 0.29 gf) among the three FDs. However, it suffered from high trackability force (22.4 to 39.9 gf) and the end part braiding mesh tended to loosen easily, so the procedure became more challenging. The NiTi(Pt) FD using a platinum core nitinol (NiTi(Pt)) wire had similar trackability force (11.3 to 22.1 gf) to NiTi FD and uniform deployment, enhancing procedural convenience. However, concerns about low expansion force (1.79 ± 0.30 gf) and the potential for migration remained. This comparative analysis contributes to a comprehensive understanding of how different wire materials influence the performance of FDs. While this study is still in its early stages and requires further research, its development has the potential to guide clinicians and researchers in optimizing the selection and development of FDs for the effective treatment of intracranial aneurysms.

3.
J Mater Chem B ; 12(6): 1538-1549, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38251728

RESUMEN

Although wound healing is a normal physiological process in the human body, it is often impaired by bacterial infections, ischemia, hypoxia, and excess inflammation, which can lead to chronic and non-healing wounds. Recently, injectable hydrogels with controlled nitric oxide (NO) release behaviour have become potential wound healing therapeutic agents due to their excellent biochemical, mechanical, and biological properties. Here, we proposed novel multifunctional NO-releasing hydrogels that could regulate various wound healing processes, including hemostasis, inflammation, cell proliferation and angiogenesis. By incorporating the copper nanoparticles (NPs) in the network of dual enzymatically crosslinked gelatin hydrogels (GH/Cu), NO was in situ produced via the Cu-catalyzed decomposition of endogenous RSNOs available in the blood, thus resolving the intrinsic shortcomings of NO therapies, such as the short storage and release time, as well as the burst and uncontrollable release modes. We demonstrated that the NO-releasing gelatin hydrogels enhanced the proliferation and migration of endothelial cells, while promoting the M2 (anti-inflammatory) polarization of the macrophage. Furthermore, the effects of NO release on angiogenesis were evaluated using an in vitro tube formation assay and in ovo chicken chorioallantoic membrane (CAM) assay, which revealed that GH/Cu hydrogels could significantly facilitate neovascularization, consistent with the in vivo results. Therefore, we suggested that these hydrogel systems would significantly enhance the wound healing process through the synergistic effects of the hydrogels and NO, and hence could be used as advanced wound dressing materials.


Asunto(s)
Gelatina , Óxido Nítrico , Humanos , Óxido Nítrico/farmacología , Gelatina/química , Células Endoteliales , Hidrogeles/química , Cobre/farmacología , Cicatrización de Heridas , Antiinflamatorios/farmacología , Movimiento Celular , Inflamación
4.
Acta Biomater ; 173: 314-324, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37949201

RESUMEN

In-stent restenosis (ISR) after percutaneous coronary intervention is a major reason for limited long-term patency due to complex neointimal proliferation caused by vascular injury. Drug-coated balloon (DCB) has been developed to treat various cardiovascular diseases including ISR by providing anti-proliferative drugs into blood vessel tissues. However, a significant proportion of the drug is lost during balloon tracking, resulting in ineffective drug delivery to the target region. In this study, we report an everolimus-coated balloon (ECB) using everolimus-loaded gelatin-hydroxyphenyl propionic acid microgel (GM) with enhanced everolimus delivery to vascular walls for long-term patency. GM with high drug loading (> 97%) was simply prepared by homogenizing enzyme-mediated crosslinked hydrogels. The optimal condition to prepare GM-coated ECB (GM-ECB) was established by changing homogenization time and ethanol solvent concentration (30 ∼ 80%). In vitro sustained everolimus release for 30 d, and cellular efficacy using smooth muscle cells and vascular endothelial cells were evaluated. Additionally, an in vivo drug transfer levels of GM-ECB using rabbit femoral arteries were assessed with reduced drug loss and efficient drug delivery capability. Finally, using ISR-induced porcine models, effective in vivo vascular patency 4 weeks after treatment of ECBs was also confirmed. Thus, this study strongly demonstrates that GM can be used as a potential drug delivery platform for DCB application. STATEMENT OF SIGNIFICANCE: We report an ECB using everolimus-loaded GM prepared by homogenization of enzymatic cross-linked hydrogel. GM showed efficient drug loading (> 97 %) and controllable size. GM-ECB exhibited potential to deliver everolimus in a sustained manner to target area with drug efficacy and viability against SMC and EC. Although GM-ECB had much lower drug content compared to controls, animal study demonstrated enhanced drug transfer and reduced drug loss of GM-ECB due to the protection of encapsulated drugs by GM, and the possible interaction between GM and endothelium. Finally, vascular patency and safety were assessed using ISR-induced porcine models. We suggest an advanced DCB strategy to alleviate rapid drug clearance by bloodstream while improving drug delivery for a long-term vascular patency.


Asunto(s)
Fármacos Cardiovasculares , Reestenosis Coronaria , Microgeles , Animales , Porcinos , Conejos , Everolimus/farmacología , Gelatina , Células Endoteliales , Grado de Desobstrucción Vascular , Factores de Riesgo , Resultado del Tratamiento , Catéteres/efectos adversos , Materiales Biocompatibles Revestidos , Reestenosis Coronaria/etiología , Reestenosis Coronaria/terapia , Paclitaxel
5.
Acta Biomater ; 171: 273-288, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37739248

RESUMEN

Retinal vascular diseases such as neovascular age-related macular degeneration (nAMD) are the leading cause of blindness worldwide. They can be treated with intravitreal injections of anti-vascular endothelial growth factor (anti-VEGF) agents by inhibiting VEGF which is a major agent of abnormal blood vessel growth. However, because of drug's short half-life, clinical treatment often requires monthly repeated intravitreal injections, causing treatment burden and undertreatment. Among various kinds of drug carriers, in situ forming hydrogels have been studied as potential intravitreal drug carriers for the high drug loading, easy injection, controlled drug release, and protection of encapsulated drugs from the environment. However, gelation time, crosslinking degree, and drug release patterns following injection of a liquid that will be subsequently gelled in situ are susceptible to be hindered by dilution of the hydrogel precursor solution with body fluids (e.g., blood or vitreous). Here, we report an injectable pre-crosslinked hydrogel rod to overcome the limitations of in situ forming hydrogels and to extend intravitreal half-life of anti-VEGF for reducing intraocular injection frequency. Hydrogel rods can be simply prepared using in situ forming hydrogels, and injectable using a designed rod injector. The adjustable crosslinking degree of hydrogel rods easily controlled bevacizumab release profiles in a sustained manner. Compared with in situ forming hydrogels, hydrogel rods effectively reduced initial burst release, and showed sustained release with long-term drug efficacy in vitro. From the 4-month in vivo pharmacokinetic analysis, following the intravitreal injection of hydrogel rods, the half-life of bevacizumab in the vitreous and retina was significantly extended, and drug elimination to aqueous humor was effectively reduced. Finally, intraocular stability, degradation, and inflammatory response of hydrogel rods were evaluated. We expect that the hydrogel rod can be a potential drug delivery system for the treatment of nAMD and other conditions that need long-term and local sustained drug administration. STATEMENT OF SIGNIFICANCE: Herein, we report an injectable pre-crosslinked hydrogel rod based on an in situ forming hydrogel to achieve intravitreal long-acting anti-VEGF delivery to reduce injection frequency and improve the long-term visual outcomes of patients with retinal vascular diseases. Hydrogel rods were readily prepared using removable molds and injected using customized injectors. Compared to the in situ forming hydrogel, hydrogel rods showed significantly reduced initial burst release, controllable release profiles for several months, physical stability, and a long-acting anti-angiogenic effect. Animal studies demonstrated that the hydrogel rods dramatically prolonged the intraocular drug half-life while significantly reducing drug elimination for up to four months. Moreover, the biodegradability and safety of the hydrogel rods suggest their suitability as an advanced intravitreal DDS for treating retinal vascular diseases.


Asunto(s)
Hidrogeles , Enfermedades Vasculares , Animales , Humanos , Bevacizumab/farmacología , Hidrogeles/farmacología , Inhibidores de la Angiogénesis/farmacología , Retina , Inyecciones Intravítreas , Portadores de Fármacos/farmacología
6.
Bioorg Med Chem Lett ; 92: 129408, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37429500

RESUMEN

A series of thalidomide analogues, where the fused benzene ring in the phthalimide moiety was converted into two separated diphenyl rings in maleimide moiety and N-aminoglutarimide moiety was replaced by substituted phenyl moiety, were synthesized and evaluated for their NO inhibitory activities on BV2 cells stimulated with lipopolysaccharide (LPS). Among the synthesized compounds, the dimethylaminophenyl analogue 1s (IC50 = 7.1 µM) showed significantly higher inhibitory activity than the glutarimide analogue 1a (IC50 > 50 µM) and suppressed NO production dose-dependently without cytotoxicity. In addition, 1s inhibited the production of pro-inflammatory cytokines and the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) by blocking nuclear factor-kappa B (NF-κB) and p38 MAPK pathways. These results demonstrated that 1s showed good anti-inflammatory activity and could become a leading compound for the treatment of neuroinflammatory diseases.


Asunto(s)
Lipopolisacáridos , Pirroles , Lipopolisacáridos/farmacología , Pirroles/metabolismo , Antiinflamatorios , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Microglía/metabolismo , Ciclooxigenasa 2/metabolismo
7.
Regen Biomater ; 9: rbac069, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36226164

RESUMEN

The dual role of reactive oxygen and nitrogen species (RONS) in physiological and pathological processes in biological systems has been widely reported. It has been recently suggested that the regulation of RONS levels under physiological and pathological conditions is a potential therapy to promote health and treat diseases, respectively. Injectable hydrogels have been emerging as promising biomaterials for RONS-related biomedical applications owing to their excellent biocompatibility, three-dimensional and extracellular matrix-mimicking structures, tunable properties and easy functionalization. These hydrogels have been developed as advanced injectable platforms for locally generating or scavenging RONS, depending on the specific conditions of the target disease. In this review article, the design principles and mechanism by which RONS are generated/scavenged from hydrogels are outlined alongside a discussion of their in vitro and in vivo evaluations. Additionally, we highlight the advantages and recent developments of these injectable RONS-controlling hydrogels for regenerative medicines and tissue engineering applications.

8.
Biochem Biophys Res Commun ; 592: 24-30, 2022 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-35016148

RESUMEN

Extracellular matrix (ECM) is playing a critical role which is component of mammalian tissue that provide structural support to cells. In addition, ECM act as a local depot for growth factors that control cell phenotype and differentiation. In this regard, scaffold that mimicking the ECM structure is important to growth or wound healing process. Gelatin is natural polymer and derived from collagen which is a major component of ECM. Using gelatin as an ECM mimicking structure has advantage of providing three-dimensional growth or supporting to regulate the cell behavior, proliferation, migration, cell survival, and differentiation. In this study, we developed enzyme-mediated crosslinking gelatin-based hydrogels with robust mechanical property to mimicking ECM and effectively attach to the surrounding tissue with high adhesive property. The effect of different concentration of graphene oxide (GO) on the physico-chemical properties of gelatin hydrogels were investigated, particularly tissue adhesion strength. In vitro proteolytic degradation behavior and human dermal fibroblast proliferation study confirmed the hydrogels were biodegradable and promote cell proliferation. Overall, we suggest that GO incorporated gelatin hydrogels with additional interfacial interactions, showing a promising potential as an injectable tissue adhesive.


Asunto(s)
Gelatina/farmacología , Grafito/farmacología , Hidrogeles/farmacología , Regeneración/fisiología , Adhesivos Tisulares/farmacología , Animales , Humanos , Espectroscopía de Fotoelectrones , Proteolisis , Regeneración/efectos de los fármacos , Sus scrofa , Resistencia a la Tracción
9.
Biomaterials ; 278: 121156, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34597900

RESUMEN

Controlling the senescence of mesenchymal stem cells (MSCs) is essential for improving the efficacy of MSC-based therapies. Here, a model of MSC senescence was established by replicative subculture in tonsil-derived MSCs (TMSCs) using senescence-associated ß-galactosidase, telomere-length related genes, stemness, and mitochondrial metabolism. Using transcriptomic and proteomic analyses, we identified glucose-regulated protein 78 (GRP78) as a unique MSC senescence marker. With increasing cell passage number, GRP78 gradually translocated from the cell surface and cytosol to the (peri)nuclear region of TMSCs. A gelatin-based hydrogel releasing a sustained, low level of reactive oxygen species (ROS-hydrogel) was used to improve TMSC quiescence and self-renewal. TMSCs expressing cell surface-specific GRP78 (csGRP78+), collected by magnetic sorting, showed better stem cell function and higher mitochondrial metabolism than unsorted cells. Implantation of csGRP78+ cells embedded in ROS-hydrogel in rats with calvarial defects resulted in increased bone regeneration. Thus, csGRP78 is a promising biomarker of senescent TMSCs, and the combined use of csGRP78+ cells and ROS-hydrogel improved the regenerative capacity of TMSCs by regulating GRP78 translocation.


Asunto(s)
Proteínas de Choque Térmico , Células Madre Mesenquimatosas , Especies Reactivas de Oxígeno , Animales , Glucosa , Hidrogeles , Proteínas de la Membrana , Osteogénesis , Tonsila Palatina , Proteómica , Ratas
10.
Int J Mol Sci ; 22(16)2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34445465

RESUMEN

Cordyline terminalis leaf extract (aqCT) possesses abundant polyphenols and other bioactive compounds, which are encapsulated in gelatin-polyethylene glycol-tyramine (GPT)/alpha-cyclodextrin (α-CD) gels to form the additional functional materials for biomedical applications. In this study, the gel compositions are optimized, and the GPT/α-CD ratios equal to or less than one half for solidification are found. The gelation time varies from 40.7 min to 5.0 h depending on the increase in GPT/α-CD ratios and aqCT amount. The aqCT extract disturbs the hydrogen bonding and host-guest inclusion of GPT/α-CD gel networks, postponing the gelation. Scanning electron microscope observation shows that all gels with or without aqCT possess a microarchitecture and porosity. GPT/α-CD/aqCT gels could release polyphenols from 110 to 350 nmol/mL at the first hour and sustainably from 5.5 to 20.2 nmol/mL for the following hours, which is controlled by feeding the aqCT amount and gel properties. GPT/α-CD/aqCT gels achieved significant antioxidant activity through a 100% scavenging DPPH radical. In addition, all gels are non-cytotoxic with a cell viability more than 85%. Especially, the GPT3.75α-CD10.5aqCT gels with aqCT amount of 3.1-12.5 mg/mL immensely enhanced the cell proliferation of GPT3.75α-CD10.5 gel without extract. These results suggest that the inherent bioactivities of aqCT endowed the resulting GPT/α-CD/aqCT gels with effective antioxidant and high biocompatibility, and natural polyphenols sustainably release a unique platform for a drug delivery system or other biomedical applications.


Asunto(s)
Cordyline/química , Dermis/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Geles/química , Extractos Vegetales/farmacología , Hojas de la Planta/química , Polifenoles/farmacología , Células Cultivadas , Liberación de Fármacos , Geles/administración & dosificación , Humanos
11.
Vaccines (Basel) ; 9(4)2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33918072

RESUMEN

COVID-19 vaccines have been developed with unprecedented speed which would not have been possible without decades of fundamental research on delivery nanotechnology. Lipid-based nanoparticles have played a pivotal role in the successes of COVID-19 vaccines and many other nanomedicines, such as Doxil® and Onpattro®, and have therefore been considered as the frontrunner in nanoscale drug delivery systems. In this review, we aim to highlight the progress in the development of these lipid nanoparticles for various applications, ranging from cancer nanomedicines to COVID-19 vaccines. The lipid-based nanoparticles discussed in this review are liposomes, niosomes, transfersomes, solid lipid nanoparticles, and nanostructured lipid carriers. We particularly focus on the innovations that have obtained regulatory approval or that are in clinical trials. We also discuss the physicochemical properties required for specific applications, highlight the differences in requirements for the delivery of different cargos, and introduce current challenges that need further development. This review serves as a useful guideline for designing new lipid nanoparticles for both preventative and therapeutic vaccines including immunotherapies.

12.
Carbohydr Polym ; 261: 117810, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33766329

RESUMEN

Chitosan-based hydrogels have been widely used for various biomedical applications due to their versatile properties such as biocompatibility, biodegradability, muco-adhesiveness, hemostatic effect and so on. However, the inherent rigidity and brittleness of pure chitosan hydrogels are still unmanageable, which has limited their potential use in biomaterial research. In this study, we developed in situ forming chitosan/PEG hydrogels with improved mechanical properties, using the enzymatic crosslinking reaction of horseradish peroxidase (HRP). The effect of PEG on physico-chemical properties of hybrid hydrogels was thoroughly elucidated by varying the content (0-100 %), molecular weight (4, 10 and 20 kDa) and geometry (linear, 4-arm) of the PEG derivatives. The resulting hydrogels demonstrated excellent hemostatic ability and are highly biocompatible in vivo, comparable to commercially available fibrin glue. We suggest these chitosan/PEG hybrid hydrogels with tunable physicochemical and tissue adhesive properties have great potential for a wide range of biomedical applications in the near future.


Asunto(s)
Quitosano/química , Hidrogeles/síntesis química , Adhesivos Tisulares , Adhesividad , Animales , Células Cultivadas , Dermis/citología , Dermis/efectos de los fármacos , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/fisiología , Hemostasis/efectos de los fármacos , Humanos , Hidrogeles/química , Hidrogeles/farmacología , Inyecciones , Masculino , Ensayo de Materiales , Ratones , Ratones Endogámicos C57BL , Estructura Molecular , Polimerizacion , Polímeros/administración & dosificación , Polímeros/síntesis química , Polímeros/química , Polímeros/farmacología , Ratas , Ratas Sprague-Dawley , Estrés Mecánico , Adhesivos Tisulares/administración & dosificación , Adhesivos Tisulares/síntesis química , Adhesivos Tisulares/química , Adhesivos Tisulares/farmacología , Ingeniería de Tejidos/métodos
13.
ACS Macro Lett ; 10(4): 426-432, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35549236

RESUMEN

Three-dimensional (3D) bioprinting has attracted considerable attention for producing 3D engineered cellular microenvironments that replicate complex and sophisticated native extracellular matrices (ECM) as well as the spatiotemporal gradients of numerous physicochemical and biological cues. Although various hydrogel-based bioinks have been reported, the development of advanced bioink materials that can reproduce the complexity of ECM accurately and mimic the intrinsic property of laden cells is still a challenge. This paper reports 3D printable bioinks composed of phenol-rich gelatin (GHPA) and graphene oxide (GO) as a component for a myogenesis-inducing material, which can form a hydrogel network in situ by a dual enzyme-mediated cross-linking reaction. The in situ curable GO/GHPA hydrogel can be utilized successfully as 3D-printable bioinks to provide suitable cellular microenvironments with facilitated myogenic differentiation of C2C12 skeletal myoblasts. Overall, we suggest that functional bioinks may be useful in muscle tissue engineering and regenerative medicine.


Asunto(s)
Gelatina , Hidrogeles , Gelatina/química , Grafito , Hidrogeles/química , Desarrollo de Músculos , Impresión Tridimensional , Andamios del Tejido/química
14.
J Control Release ; 329: 401-412, 2021 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-33309971

RESUMEN

Thrombosis and inflammation after implantation remain unsolved problems associated with various medical devices with blood-contacting applications. In this study, we develop a multifunctional biomaterial with enhanced hemocompatibility and anti-inflammatory effects by combining the anticoagulant activity of heparin with the vasodilatory and anti-inflammatory properties of nitric oxide (NO). The co-immobilization of these two key molecules with distinct therapeutic effects is achieved by simultaneous conjugation of heparin (HT) and copper nanoparticles (Cu NPs), an NO-generating catalyst, via a simple tyrosinase (Tyr)-mediated reaction. The resulting immobilized surface showed long-term, stable and adjustable NO release for 14 days. Importantly, the makeup of the material endows the surface with the ability to promote endothelialization and to inhibit coagulation, platelet activation and smooth muscle cell proliferation. In addition, the HT/Cu NP co-immobilized surface enhanced macrophage polarization towards the M2 phenotype in vitro, which can reduce the inflammatory response and improve the adaptation of implants in vivo. This study demonstrated a simple but efficient method of developing a multifunctional surface for blood-contacting devices.


Asunto(s)
Heparina , Óxido Nítrico , Coagulación Sanguínea , Cobre , Activación Plaquetaria , Propiedades de Superficie
15.
J Mater Chem B ; 8(48): 11033-11043, 2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33196075

RESUMEN

Injectable hydrogels can serve as therapeutic vehicles and implants for the treatment of various diseases as well as for tissue repair/regeneration. In particular, the horseradish peroxidase (HRP) and hydrogen peroxide (H2O2)-catalyzed hydrogelation system has attracted much attention, due to its ease of handling and controllable gel properties. In this study, we introduce calcium peroxide (CaO2) as a H2O2-generating reagent to gradually supply a radical source for the HRP-catalyzed crosslinking reaction. This novel therapy can create stiff hydrogels without compromising the cytocompatibility of the hydrogels due to the use of initially high concentrations of H2O2. The physico-chemical properties of the hydrogels can be controlled by varying the concentrations of HRP and CaO2. In addition, the controlled and sustained release of bioactive molecules, including H2O2, O2, and Ca2+ ions, from the hydrogels could stimulate the cellular behaviors (attachment, migration, and differentiation) of human mesenchymal stem cells. Moreover, the hydrogels exhibited killing efficacy against both Gram-negative and Gram-positive bacteria, dependent on the H2O2 and Ca2+ release amounts. These positive results suggest that hydrogels formed by HRP/CaO2 can be used as potential matrices for a wide range of biomedical applications, such as bone regeneration and infection treatment.


Asunto(s)
Antibacterianos/síntesis química , Hidrogeles/síntesis química , Células Madre Mesenquimatosas/efectos de los fármacos , Peróxidos/síntesis química , Antibacterianos/farmacología , Movimiento Celular/efectos de los fármacos , Movimiento Celular/fisiología , Escherichia coli/efectos de los fármacos , Escherichia coli/fisiología , Humanos , Hidrogeles/farmacología , Células Madre Mesenquimatosas/fisiología , Peróxidos/farmacología , Streptococcus/efectos de los fármacos , Streptococcus/fisiología
16.
Transl Vis Sci Technol ; 9(4): 7, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32818095

RESUMEN

Purpose: To investigate intraocular pharmacokinetics of 10-fold dose of intravitreally injected ranibizumab compared with the conventional dose in an experimental model. Methods: Ranibizumab 30 µL at 10 mg/mL (conventional) and 100 mg/mL (10-fold) doses was injected separately into each eye of 28 rabbits. Ranibizumab concentrations in the aqueous humor, vitreous, and retina were estimated at each time period after injection, using enzyme-linked immunosorbent assay. The pharmacokinetic properties of ranibizumab were determined using a one-compartment model in all three ocular tissues. The time-concentration profile and predictive trends were plotted to determine drug efficacy in the retina. Results: Maximum concentrations after conventional and 10-fold dosing were observed in the retina at 1 and 4 days after injection, respectively. The half-life of ranibizumab after conventional and 10-fold dosing did not differ in the anterior chamber and vitreous, whereas the half-life was prolonged approximately twice with the 10-fold dose in the retina (36.74 h vs. 76.85 h) and serum (91.93 h vs. 179.01 h). Similarly, the estimated time for ranibizumab concentration in the retina over 27 ng/mL (minimum effective concentration of ranibizumab) was prolonged approximately twice with the 10-fold dose (1315 h [55 days] vs. 2393 h [100 days]). No adverse effects were observed in either group. Conclusions: The retinal half-life and concentration of ranibizumab in rabbit eyes were increased approximately twice after a 10-fold dose compared with the conventional dose. This finding indicates a possibility to lengthen the injection interval to improve the efficacy of ranibizumab in human eyes. Translational Relevance: Our results highlight the potential for clinical application of a high-dose (10-fold) of anti-VEGF agents to prolong the intravitreal injection intervals, simultaneously improving the drug efficacy.


Asunto(s)
Inhibidores de la Angiogénesis , Ranibizumab , Inhibidores de la Angiogénesis/uso terapéutico , Animales , Humor Acuoso , Inyecciones Intravítreas , Conejos , Cuerpo Vítreo
17.
Nanomaterials (Basel) ; 10(3)2020 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-32192177

RESUMEN

Phytoconstituents presenting in herbal plant broths are the biocompatible, regenerative, and cost-effective sources that can be utilized for green synthesis of silver nanoparticles. Different plant extracts can form nanoparticles with specific sizes, shapes, and properties. In the study, we prepared silver nanoparticles (P.uri.AgNPs, P.zey.AgNPs, and S.dul.AgNPs) based on three kinds of leaf extracts (Phyllanthus urinaria, Pouzolzia zeylanica, and Scoparia dulcis, respectively) and demonstrated the antifungal capacity. The silver nanoparticles were simply formed by adding silver nitrate to leaf extracts without using any reducing agents or stabilizers. Formation and physicochemical properties of these silver nanoparticles were characterized by UV-vis, Fourier transforms infrared spectroscopy, scanning electron microscope, transmission electron microscope, and energy dispersive X-ray spectroscopy. P.uri.AgNPs were 28.3 nm and spherical. P.zey.AgNPs were 26.7 nm with hexagon or triangle morphologies. Spherical S.dul.AgNPs were formed and they were relatively smaller than others. P.uri.AgNPs, P.zey.AgNPs and S.dul.AgNPs exhibited the antifungal ability effective against Aspergillus niger, Aspergillus flavus, and Fusarium oxysporum, demonstrating their potentials as fungicides in the biomedical and agricultural applications.

18.
Polymers (Basel) ; 12(2)2020 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-32024289

RESUMEN

Poly(ethylene glycol) (PEG) is widely used as a gold standard in bioconjugation and nanomedicine to prolong blood circulation time and improve drug efficacy. The conjugation of PEG to proteins, peptides, oligonucleotides (DNA, small interfering RNA (siRNA), microRNA (miRNA)) and nanoparticles is a well-established technique known as PEGylation, with PEGylated products have been using in clinics for the last few decades. However, it is increasingly recognized that treating patients with PEGylated drugs can lead to the formation of antibodies that specifically recognize and bind to PEG (i.e., anti-PEG antibodies). Anti-PEG antibodies are also found in patients who have never been treated with PEGylated drugs but have consumed products containing PEG. Consequently, treating patients who have acquired anti-PEG antibodies with PEGylated drugs results in accelerated blood clearance, low drug efficacy, hypersensitivity, and, in some cases, life-threatening side effects. In this succinct review, we collate recent literature to draw the attention of polymer chemists to the issue of PEG immunogenicity in drug delivery and bioconjugation, thereby highlighting the importance of developing alternative polymers to replace PEG. Several promising yet imperfect alternatives to PEG are also discussed. To achieve asatisfactory alternative, further joint efforts of polymer chemists and scientists in related fields are urgently needed to design, synthesize and evaluate new alternatives to PEG.

20.
Adv Funct Mater ; 30(46)2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-38053980

RESUMEN

Exposure of aged mice to a young systemic milieu revealed remarkable rejuvenation effects on aged tissues, including skeletal muscle. Although some candidate factors have been identified, the exact identity and the underlying mechanisms of putative rejuvenating factors remain elusive, mainly due to the complexity of in vivo parabiosis. Here, we present an in vitro muscle parabiosis system that integrates young- and old-muscle stem cell vascular niche on a three-dimensional microfluidic platform designed to recapitulate key features of native muscle stem cell microenvironment. This innovative system enables mechanistic studies of cellular dynamics and molecular interactions within the muscle stem cell niche, especially in response to conditional extrinsic stimuli of local and systemic factors. We demonstrate that vascular endothelial growth factor (VEGF) signaling from endothelial cells and myotubes synergistically contribute to the rejuvenation of the aged muscle stem cell function. Moreover, with the adjustable on-chip system, we can mimic both blood transfusion and parabiosis and detect the time-varying effects of anti-geronic and pro-geronic factors in a single organ or multi-organ systems. Our unique approach presents a complementary in vitro model to supplement in vivo parabiosis for identifying potential anti-geronic factors responsible for revitalizing aging organs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...