Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Insects ; 14(5)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37233040

RESUMEN

The tobacco cutworm, Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae), is one of the most serious pests in field crops, vegetables, and ornamentals. Temperatures (15, 20, 25, 27, 30, 35, and 40 °C), host plants (soybean (Glycine max (L.)), maize (Zea mays L.), groundnut (Arachis hypogaea L.) and azuki bean (Vigna angularis (Willd.) Ohwi & H. Ohashi,), and the artificial diet-dependent developmental parameters and survival of S. litura were examined in this study. Stage-specific parameters such as threshold development temperature (LDT) and thermal constant (K) (Degree day (DD)) were determined by linear and nonlinear models (Sharpe-Schoolfield-Ikemoto), respectively. The total developmental time (egg-adult) decreased with increasing temperature on host plants and with an artificial diet. The total immature developmental time varied from 106.29, 107.57, 130.40, 111.82, and 103.66 days at 15 °C to 22.47, 21.25, 25.31, 18.30, and 22.50 days at 35 °C on soybean, maize, groundnut, azuki bean, and artificial diet, respectively. The LDT for the total immature completion was 7.50, 9.48, 11.44, 12.32, and 7.95 °C on soybean, maize, groundnut, azuki bean, and artificial diet, respectively. The K for the total immature completion was 587.88, 536.84, 517.45, 419.44, and 586.95 DD on soybean, maize, groundnut, azuki bean, and artificial diet, respectively. Temperature and host plant interaction also influenced the longevity and survival of adults. The findings of this study can be used to predict the number of generations, spring emergence, and population dynamics of S. litura. The nutrient content analysis of the host plants is discussed in terms of the developmental patterns of S. litura.

2.
Environ Entomol ; 51(1): 263-277, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-34635921

RESUMEN

Perilla seed bugs (Nysius sp.) are considered to be the emerging pests causing nutritional and yield losses in perilla and cereal crops. A survey of perilla seed bugs on weeds and perilla crops was conducted over the course of 2 yr in Korea to determine the species composition, abundance, and seasonal dynamics of perilla seed bugs. Three species of Heteroptera (Nysius plebeius, Nysius hidakai, and Nysius inconspicuus), nymphs of Nysius species, and several parasitoid species were collected from weeds and perilla crops. Nysius hidakai was the most abundant perilla seed bugs. In 2019, adult perilla seed bugs, nymphs of perilla seed bugs, and parasitoid species were more abundant in weed species than in perilla crops. An early peak with a greater number of adult perilla seed bug (N. hidakai) was observed in weeds in 2020. However, an identical peak with a similar number of perilla seed bug (N. hidakai) was found in perilla crops in both years. Peak perilla seed bugs densities were observed in the 4th week of June, 2020 in weeds. Parasitoid species from Aphidiidae (1), Braconidae (11), Eulophidae (7), Figitidae (5), Ichneumonidae (7), Platygastridae (1), and Pteromalidae (5) subfamilies were collected. Perilla seed bugs seem to be a serious and increasingly important pest in several field crop species including perilla crops grown on the southern Korean peninsula. Monitoring and early detection of insect species are vital to predicting seasonal colonization and population build-up of perilla seed bugs on perilla crops from a climate change perspective, and essential for developing appropriate management techniques. Thus, continuous monitoring of perilla seed bugs in alternative weed hosts is needed to protect perilla crops from perilla seed bug infestation.


Asunto(s)
Heterópteros , Perilla , Animales , Malezas , Densidad de Población , Estaciones del Año
3.
Food Sci Biotechnol ; 26(2): 339-347, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-30263548

RESUMEN

This is the first study to investigate antioxidant capacities of isoflavones prepared using microwave-assisted hydrolysis method from different parts (seeds, leaves, leafstalks, pods, stems and roots) of soybean at growth stages. In addition, the fluctuations in the isoflavone, protein, fatty acid, and oil contents in R6-R8 (R6: beginning; R7: beginning maturity; R8: full maturity) seeds were confirmed. The R7 seeds exhibited the most predominant contents of isoflavones (1218.1±7.3 µg/g) in the following order: daidzein (48%)>genistein (35%)>glycitein (17%). The second highest isoflavone content was found in the leaves (1052.1±10.4 µg/g), followed by R8 seeds>roots>R6 seeds>leafstalks> pods; the stems exhibited the lowest isoflavone content (57.2±1.7 µg/g). Interestingly, daidzein showed the highest individual isoflavone content with remarkable variations (57.2-766.8 µg/g), representing 46-100% of the total isoflavone content. R8 exhibited higher protein, fatty acid, and oil contents than R6 or R7. Moreover, the antioxidant capacities against two radicals in different parts of soybean plant showed considerable differences depending upon the isoflavone content. Our results suggested that soybean leaves and seeds might be useful materials for functional foods.

4.
Syst Appl Microbiol ; 28(3): 277-86, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15900973

RESUMEN

The family Acetobacteraceae currently includes three known nitrogen-fixing species, Gluconacetobacter diazotrophicus, G. johannae and G. azotocaptans. In the present study, acetic acid-producing nitrogen-fixing bacteria were isolated from four different wetland rice varieties cultivated in the state of Tamilnadu, India. Most of these isolates were identified as G. diazotrophicus on the basis of their phenotypic characteristics and PCR assays using specific primers for that species. Based on 16S rDNA partial sequence analysis and DNA: DNA reassociation experiments the remaining isolates were identified as Acetobacter peroxydans, another species of the Acetobacteraceae family, thus far never reported as diazotrophic. The presence of nifH genes in A. peroxydans was confirmed by PCR amplification with nifH specific primers. Scope for the findings: This is the first report of the occurrence and association of N2-fixing Gluconacetobacter diazotrophicus and Acetobacter peroxydans with wetland rice varieties. This is the first report of diazotrophic nature of A. peroxydans.


Asunto(s)
Acetobacter/aislamiento & purificación , Gluconacetobacter/aislamiento & purificación , Oryza/microbiología , Acetobacter/clasificación , Acetobacter/genética , Acetobacter/metabolismo , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Microbiología Ambiental , Genes de ARNr , Gluconacetobacter/clasificación , Gluconacetobacter/genética , Gluconacetobacter/metabolismo , India , Datos de Secuencia Molecular , Fijación del Nitrógeno , Hibridación de Ácido Nucleico , Oxidorreductasas/genética , Filogenia , Reacción en Cadena de la Polimerasa , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...