Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36674523

RESUMEN

Three-dimensional (3D) culture platforms have been adopted in a high-throughput screening (HTS) system to mimic in vivo physiological microenvironments. The automated dispenser has been established commercially to enable spotting or distributing non-viscous or viscous biomaterials onto microplates. However, there are still challenges to the precise and accurate dispensation of cells embedded in hydrogels such as Alginate- and Matrigel-extracellular matrices. We developed and improved an automated contact-free dispensing machine, the ASFA SPOTTER (V5 and V6), which is compatible with 96- and 384-pillar/well plates and 330- and 532-micropillar/well chips for the support of 3D spheroid/organoid models using bioprinting techniques. This enables the distribution of non-viscous and viscous biosamples, including chemical drugs and cancer cells, for large-scale drug screening at high speed and small volumes (20 to 4000 nanoliters) with no damage to cells. The ASFA SPOTTER (V5 and V6) utilizes a contact-free method that minimizes cross-contamination for the dispensation of encapsulated tissue cells with highly viscous scaffolds (over 70%). In particular, the SPOTTER V6 does not require a washing process and offers the advantage of almost no dead volume (defined as additional required sample volume, including a pre-shot and flushing shot for dispensing). It can be successfully applied for the achievement of an organoid culture in automation, with rapid and easy operation, as well as miniaturization for high-throughput screening. In this study, we report the advantages of the ASFA SPOTTER, which distributes standard-sized cell spots with hydrogels onto a 384-pillar/well plate with a fast dispensing speed, small-scale volume, accuracy, and precision.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Neoplasias , Humanos , Ensayos Analíticos de Alto Rendimiento/métodos , Técnicas de Cultivo de Célula/métodos , Evaluación Preclínica de Medicamentos/métodos , Hidrogeles , Esferoides Celulares , Microambiente Tumoral
2.
Sci Rep ; 12(1): 19546, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36379986

RESUMEN

We investigated the effect of specific surface area on the electrochemical properties of NiCo2O4 (NCO) for glucose detection. NCO nanomaterials with controlled specific surface areas were prepared by additive-assisted hydrothermal synthesis, and self-assembled nanostructures with urchin-, pine-needle-, tremella-, and flower-like morphologies were obtained. The novelty of this method is the systematic control of chemical reaction routes assisted by the addition of different additives during synthesis, which results in the spontaneous formation of various morphologies without any difference in the crystal structure and chemical states of the constituent elements. Such morphological control of NCO nanomaterials leads to considerable changes in the electrochemical performance for glucose detection. Combined with materials characterization, the relationship between the specific surface area and the electrochemical performance is discussed for glucose detection. This work can provide scientific insights for tailoring the surface area of nanostructures, which determines their functionality for potential applications in glucose biosensors.


Asunto(s)
Cobalto , Níquel , Níquel/química , Cobalto/química , Glucosa
3.
Nanomaterials (Basel) ; 12(6)2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35335796

RESUMEN

Exploring bifunctional electrocatalysts to lower the activation energy barriers for sluggish electrochemical reactions for both the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are of great importance in achieving lower energy consumption and higher conversion efficiency for future energy conversion and storage system. Despite the excellent performance of precious metal-based electrocatalysts for OER and ORR, their high cost and scarcity hamper their large-scale industrial application. As alternatives to precious metal-based electrocatalysts, the development of earth-abundant and efficient catalysts with excellent electrocatalytic performance in both the OER and the ORR is urgently required. Herein, we report a core-shell CoFeS2@CoS2 heterostructure entangled with carbon nanotubes as an efficient bifunctional electrocatalyst for both the OER and the ORR. The CoFeS2@CoS2 nanocubes entangled with carbon nanotubes show superior electrochemical performance for both the OER and the ORR: a potential of 1.5 V (vs. RHE) at a current density of 10 mA cm-2 for the OER in alkaline medium and an onset potential of 0.976 V for the ORR. This work suggests a processing methodology for the development of the core-shell heterostructures with enhanced bifunctional performance for both the OER and the ORR.

4.
Sci Rep ; 12(1): 32, 2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-34996994

RESUMEN

Thin film-based optical sensors have been attracting increasing interest for use in developing technologies such as biometrics. Multilayered dielectric thin films with different refractive indices have been utilized to modulate the optical properties in specific wavelength bands for spectral selectivity of Thin Film Narrow Bandpass Filters (TFNBFs). Progress in TFNBF design has been made with the incorporation of metallic thin films. Narrower bandwidths with higher transmittance have been achieved in specific spectral bands. In this work, Ti/TiO2/SiO2 based multilayer thin films were prepared using pulsed-DC reactive sputtering. Computer simulations using the Essential Macleod Program allowed the optimal number of layers and thickness of the multilayer thin films to be determined to efficiently tailor the optical path transmitting specific wavelength bands. The addition of Ti metal layers within dielectric (TiO2/SiO2) multilayer thin films significantly changes the cutoff frequency of transmittance at specific wavelengths. Representative 26 multilayer films consisting of Ti, TiO2, and SiO2 show lower transmittance of 10.29% at 400 nm and 10.48% at 680 nm. High transmittance of 80.42% at 485 nm was observed, which is expected to improve the spectral selectivity of the TFNBF. This work provides a contribution to future simulation based design strategy based on experimental thin film engineering for potential industrial development opportunities such as optical biometrics.

5.
Nanomaterials (Basel) ; 11(1)2020 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-33379350

RESUMEN

In this work, we prepared spinel-type NiCo2O4 (NCO) nanopowders as a low-cost and sensitive electrochemical sensor for nonenzymatic glucose detection. A facile and simple chemical bath method to synthesize the NCO nanopowders is demonstrated. The effect of pH and annealing temperature on the formation mechanism of NCO nanoparticles was systematically investigated. Our studies show that different pHs of the precursor solution during synthesis result in different intermediate phases and relating chemical reactions for the formation of NCO nanoparticles. Different morphologies of the NCO depending on pHs are also discussed based on the mechanism of growth. Electrochemical performance of the prepared NCO was characterized towards glucose, which reveals that sensitivity and selectivity of the NCO are significantly related with the final microstructure combined with constituent species with multiple oxidation states in the spinel structure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA