Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 625(7993): 166-174, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38057662

RESUMEN

Myeloid cells are known to suppress antitumour immunity1. However, the molecular drivers of immunosuppressive myeloid cell states are not well defined. Here we used single-cell RNA sequencing of human and mouse non-small cell lung cancer (NSCLC) lesions, and found that in both species the type 2 cytokine interleukin-4 (IL-4) was predicted to be the primary driver of the tumour-infiltrating monocyte-derived macrophage phenotype. Using a panel of conditional knockout mice, we found that only deletion of the IL-4 receptor IL-4Rα in early myeloid progenitors in bone marrow reduced tumour burden, whereas deletion of IL-4Rα in downstream mature myeloid cells had no effect. Mechanistically, IL-4 derived from bone marrow basophils and eosinophils acted on granulocyte-monocyte progenitors to transcriptionally programme the development of immunosuppressive tumour-promoting myeloid cells. Consequentially, depletion of basophils profoundly reduced tumour burden and normalized myelopoiesis. We subsequently initiated a clinical trial of the IL-4Rα blocking antibody dupilumab2-5 given in conjunction with PD-1/PD-L1 checkpoint blockade in patients with relapsed or refractory NSCLC who had progressed on PD-1/PD-L1 blockade alone (ClinicalTrials.gov identifier NCT05013450 ). Dupilumab supplementation reduced circulating monocytes, expanded tumour-infiltrating CD8 T cells, and in one out of six patients, drove a near-complete clinical response two months after treatment. Our study defines a central role for IL-4 in controlling immunosuppressive myelopoiesis in cancer, identifies a novel combination therapy for immune checkpoint blockade in humans, and highlights cancer as a systemic malady that requires therapeutic strategies beyond the primary disease site.


Asunto(s)
Médula Ósea , Carcinogénesis , Interleucina-4 , Mielopoyesis , Transducción de Señal , Animales , Humanos , Ratones , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/metabolismo , Médula Ósea/efectos de los fármacos , Médula Ósea/metabolismo , Carcinogénesis/efectos de los fármacos , Carcinogénesis/metabolismo , Carcinogénesis/patología , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/terapia , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Inhibidores de Puntos de Control Inmunológico/inmunología , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Interleucina-4/metabolismo , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/terapia , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/inmunología , Monocitos/efectos de los fármacos , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/metabolismo , Recurrencia , Transducción de Señal/efectos de los fármacos
2.
Immunity ; 56(12): 2790-2802.e6, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38091952

RESUMEN

Neurodegenerative diseases (ND) are characterized by progressive loss of neuronal function. Mechanisms of ND pathogenesis are incompletely understood, hampering the development of effective therapies. Langerhans cell histiocytosis (LCH) is an inflammatory neoplastic disorder caused by hematopoietic progenitors expressing mitogen-activated protein kinase (MAPK)-activating mutations that differentiate into senescent myeloid cells that drive lesion formation. Some individuals with LCH subsequently develop progressive and incurable neurodegeneration (LCH-ND). Here, we showed that LCH-ND was caused by myeloid cells that were clonal with peripheral LCH cells. Circulating BRAFV600E+ myeloid cells caused the breakdown of the blood-brain barrier (BBB), enhancing migration into the brain parenchyma where they differentiated into senescent, inflammatory CD11a+ macrophages that accumulated in the brainstem and cerebellum. Blocking MAPK activity and senescence programs reduced peripheral inflammation, brain parenchymal infiltration, neuroinflammation, neuronal damage and improved neurological outcome in preclinical LCH-ND. MAPK activation and senescence programs in circulating myeloid cells represent targetable mechanisms of LCH-ND.


Asunto(s)
Histiocitosis de Células de Langerhans , Proteínas Proto-Oncogénicas B-raf , Humanos , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Histiocitosis de Células de Langerhans/genética , Histiocitosis de Células de Langerhans/patología , Histiocitosis de Células de Langerhans/terapia , Encéfalo/metabolismo , Células Mieloides/metabolismo , Diferenciación Celular
3.
bioRxiv ; 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37873371

RESUMEN

Neurodegenerative diseases (ND) are characterized by progressive loss of neuronal function. Mechanisms of ND pathogenesis are incompletely understood, hampering the development of effective therapies. Langerhans cell histiocytosis (LCH) is an inflammatory neoplastic disorder caused by hematopoietic progenitors expressing MAPK activating mutations that differentiate into senescent myeloid cells that drive lesion formation. Some patients with LCH subsequently develop progressive and incurable neurodegeneration (LCH-ND). Here, we show that LCH-ND is caused by myeloid cells that are clonal with peripheral LCH cells. We discovered that circulating BRAF V600E + myeloid cells cause the breakdown of the blood-brain barrier (BBB), enhancing migration into the brain parenchyma where they differentiate into senescent, inflammatory CD11a + macrophages that accumulate in the brainstem and cerebellum. Blocking MAPK activity and senescence programs reduced parenchymal infiltration, neuroinflammation, neuronal damage and improved neurological outcome in preclinical LCH-ND. MAPK activation and senescence programs in circulating myeloid cells represent novel and targetable mechanisms of ND.

4.
Nat Med ; 29(6): 1389-1399, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37322116

RESUMEN

Despite no apparent defects in T cell priming and recruitment to tumors, a large subset of T cell rich tumors fail to respond to immune checkpoint blockade (ICB). We leveraged a neoadjuvant anti-PD-1 trial in patients with hepatocellular carcinoma (HCC), as well as additional samples collected from patients treated off-label, to explore correlates of response to ICB within T cell-rich tumors. We show that ICB response correlated with the clonal expansion of intratumoral CXCL13+CH25H+IL-21+PD-1+CD4+ T helper cells ("CXCL13+ TH") and Granzyme K+ PD-1+ effector-like CD8+ T cells, whereas terminally exhausted CD39hiTOXhiPD-1hiCD8+ T cells dominated in nonresponders. CD4+ and CD8+ T cell clones that expanded post-treatment were found in pretreatment biopsies. Notably, PD-1+TCF-1+ (Progenitor-exhausted) CD8+ T cells shared clones mainly with effector-like cells in responders or terminally exhausted cells in nonresponders, suggesting that local CD8+ T cell differentiation occurs upon ICB. We found that these Progenitor CD8+ T cells interact with CXCL13+ TH within cellular triads around dendritic cells enriched in maturation and regulatory molecules, or "mregDC". These results suggest that discrete intratumoral niches that include mregDC and CXCL13+ TH control the differentiation of tumor-specific Progenitor exhasuted CD8+ T cells following ICB.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Linfocitos T CD8-positivos , Neoplasias Hepáticas/patología , Receptor de Muerte Celular Programada 1 , Linfocitos T Colaboradores-Inductores , Diferenciación Celular , Células Dendríticas/patología
5.
Nat Immunol ; 24(5): 792-801, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37081148

RESUMEN

Natural killer (NK) cells are commonly reduced in human tumors, enabling many to evade surveillance. Here, we sought to identify cues that alter NK cell activity in tumors. We found that, in human lung cancer, the presence of NK cells inversely correlated with that of monocyte-derived macrophages (mo-macs). In a murine model of lung adenocarcinoma, we show that engulfment of tumor debris by mo-macs triggers a pro-tumorigenic program governed by triggering receptor expressed on myeloid cells 2 (TREM2). Genetic deletion of Trem2 rescued NK cell accumulation and enabled an NK cell-mediated regression of lung tumors. TREM2+ mo-macs reduced NK cell activity by modulating interleukin (IL)-18/IL-18BP decoy interactions and IL-15 production. Notably, TREM2 blockade synergized with an NK cell-activating agent to further inhibit tumor growth. Altogether, our findings identify a new axis, in which TREM2+ mo-macs suppress NK cell accumulation and cytolytic activity. Dual targeting of macrophages and NK cells represents a new strategy to boost antitumor immunity.


Asunto(s)
Células Asesinas Naturales , Neoplasias Pulmonares , Humanos , Ratones , Animales , Macrófagos , Células Mieloides , Glicoproteínas de Membrana/genética , Receptores Inmunológicos/genética
6.
Cell ; 185(23): 4259-4279, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36368305

RESUMEN

The heterogeneity of tissue macrophages, in health and in disease, has become increasingly transparent over the last decade. But with the plethora of data comes a natural need for organization and the design of a conceptual framework for how we can better understand the origins and functions of different macrophages. We propose that the ontogeny of a macrophage-beyond its fundamental derivation as either embryonically or bone marrow-derived, but rather inclusive of the course of its differentiation, amidst steady-state cues, disease-associated signals, and time-constitutes a critical piece of information about its contribution to homeostasis or the progression of disease.


Asunto(s)
Médula Ósea , Macrófagos , Homeostasis , Diferenciación Celular
7.
Sci Transl Med ; 14(662): eabn5168, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36103512

RESUMEN

Although it has been more than 2 years since the start of the coronavirus disease 2019 (COVID-19) pandemic, COVID-19 continues to be a worldwide health crisis. Despite the development of preventive vaccines, therapies to treat COVID-19 and other inflammatory diseases remain a major unmet need in medicine. Our study sought to identify drivers of disease severity and mortality to develop tailored immunotherapy strategies to halt disease progression. We assembled the Mount Sinai COVID-19 Biobank, which was composed of almost 600 hospitalized patients followed longitudinally through the peak of the pandemic in 2020. Moderate disease and survival were associated with a stronger antigen presentation and effector T cell signature. In contrast, severe disease and death were associated with an altered antigen presentation signature, increased numbers of inflammatory immature myeloid cells, and extrafollicular activated B cells that have been previously associated with autoantibody formation. In severely ill patients with COVID-19, lung tissue-resident alveolar macrophages not only were drastically depleted but also had an altered antigen presentation signature, which coincided with an influx of inflammatory monocytes and monocyte-derived macrophages. In addition, we found that the size of the alveolar macrophage pool correlated with patient outcome and that alveolar macrophage numbers and functionality were restored to homeostasis in patients who recovered from COVID-19. These data suggest that local and systemic myeloid cell dysregulation are drivers of COVID-19 severity and modulation of alveolar macrophage numbers and activity in the lung may be a viable therapeutic strategy for the treatment of critical inflammatory lung diseases.


Asunto(s)
COVID-19 , Macrófagos Alveolares , Humanos , Pulmón , Macrófagos , Monocitos
8.
bioRxiv ; 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-35043110

RESUMEN

Though it has been 2 years since the start of the Coronavirus Disease 19 (COVID-19) pandemic, COVID-19 continues to be a worldwide health crisis. Despite the development of preventive vaccines, very little progress has been made to identify curative therapies to treat COVID-19 and other inflammatory diseases which remain a major unmet need in medicine. Our study sought to identify drivers of disease severity and death to develop tailored immunotherapy strategies to halt disease progression. Here we assembled the Mount Sinai COVID-19 Biobank which was comprised of ~600 hospitalized patients followed longitudinally during the peak of the pandemic. Moderate disease and survival were associated with a stronger antigen (Ag) presentation and effector T cell signature, while severe disease and death were associated with an altered Ag presentation signature, increased numbers of circulating inflammatory, immature myeloid cells, and extrafollicular activated B cells associated with autoantibody formation. Strikingly, we found that in severe COVID-19 patients, lung tissue resident alveolar macrophages (AM) were not only severely depleted, but also had an altered Ag presentation signature, and were replaced by inflammatory monocytes and monocyte-derived macrophages (MoMΦ). Notably, the size of the AM pool correlated with recovery or death, while AM loss and functionality were restored in patients that recovered. These data therefore suggest that local and systemic myeloid cell dysregulation is a driver of COVID-19 severity and that modulation of AM numbers and functionality in the lung may be a viable therapeutic strategy for the treatment of critical lung inflammatory illnesses.

9.
Nat Microbiol ; 7(1): 62-72, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34873293

RESUMEN

Swift recruitment of phagocytic leucocytes is critical in preventing infection when bacteria breach through the protective layers of the skin. According to canonical models, this occurs via an indirect process that is initiated by contact of bacteria with resident skin cells and which is independent of the pathogenic potential of the invader. Here we describe a more rapid mechanism of leucocyte recruitment to the site of intrusion of the important skin pathogen Staphylococcus aureus that is based on direct recognition of specific bacterial toxins, the phenol-soluble modulins (PSMs), by circulating leucocytes. We used a combination of intravital imaging, ear infection and skin abscess models, and in vitro gene expression studies to demonstrate that this early recruitment was dependent on the transcription factor EGR1 and contributed to the prevention of infection. Our findings refine the classical notion of the non-specific and resident cell-dependent character of the innate immune response to bacterial infection by demonstrating a pathogen-specific high-alert mechanism involving direct recruitment of immune effector cells by secreted bacterial products.


Asunto(s)
Toxinas Bacterianas/inmunología , Linfocitos/inmunología , Infiltración Neutrófila/inmunología , Piel/inmunología , Piel/microbiología , Infecciones Cutáneas Estafilocócicas/inmunología , Staphylococcus aureus/inmunología , Animales , Femenino , Humanos , Microscopía Intravital/métodos , Ratones Endogámicos C57BL , Staphylococcus aureus/patogenicidad , Factores de Virulencia
10.
Cancer Cell ; 39(12): 1594-1609.e12, 2021 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-34767762

RESUMEN

Immunotherapy is a mainstay of non-small cell lung cancer (NSCLC) management. While tumor mutational burden (TMB) correlates with response to immunotherapy, little is known about the relationship between the baseline immune response and tumor genotype. Using single-cell RNA sequencing, we profiled 361,929 cells from 35 early-stage NSCLC lesions. We identified a cellular module consisting of PDCD1+CXCL13+ activated T cells, IgG+ plasma cells, and SPP1+ macrophages, referred to as the lung cancer activation module (LCAMhi). We confirmed LCAMhi enrichment in multiple NSCLC cohorts, and paired CITE-seq established an antibody panel to identify LCAMhi lesions. LCAM presence was found to be independent of overall immune cell content and correlated with TMB, cancer testis antigens, and TP53 mutations. High baseline LCAM scores correlated with enhanced NSCLC response to immunotherapy even in patients with above median TMB, suggesting that immune cell composition, while correlated with TMB, may be a nonredundant biomarker of response to immunotherapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/inmunología , Inmunoterapia/métodos , Neoplasias Pulmonares/inmunología , Análisis de la Célula Individual/métodos , Humanos
11.
Nature ; 595(7868): 578-584, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34135508

RESUMEN

Macrophages have a key role in shaping the tumour microenvironment (TME), tumour immunity and response to immunotherapy, which makes them an important target for cancer treatment1,2. However, modulating macrophages has proved extremely difficult, as we still lack a complete understanding of the molecular and functional diversity of the tumour macrophage compartment. Macrophages arise from two distinct lineages. Tissue-resident macrophages self-renew locally, independent of adult haematopoiesis3-5, whereas short-lived monocyte-derived macrophages arise from adult haematopoietic stem cells, and accumulate mostly in inflamed lesions1. How these macrophage lineages contribute to the TME and cancer progression remains unclear. To explore the diversity of the macrophage compartment in human non-small cell lung carcinoma (NSCLC) lesions, here we performed single-cell RNA sequencing of tumour-associated leukocytes. We identified distinct populations of macrophages that were enriched in human and mouse lung tumours. Using lineage tracing, we discovered that these macrophage populations differ in origin and have a distinct temporal and spatial distribution in the TME. Tissue-resident macrophages accumulate close to tumour cells early during tumour formation to promote epithelial-mesenchymal transition and invasiveness in tumour cells, and they also induce a potent regulatory T cell response that protects tumour cells from adaptive immunity. Depletion of tissue-resident macrophages reduced the numbers and altered the phenotype of regulatory T cells, promoted the accumulation of CD8+ T cells and reduced tumour invasiveness and growth. During tumour growth, tissue-resident macrophages became redistributed at the periphery of the TME, which becomes dominated by monocyte-derived macrophages in both mouse and human NSCLC. This study identifies the contribution of tissue-resident macrophages to early lung cancer and establishes them as a target for the prevention and treatment of early lung cancer lesions.


Asunto(s)
Carcinogénesis , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Macrófagos/inmunología , Microambiente Tumoral , Animales , Linfocitos T CD8-positivos/inmunología , Transición Epitelial-Mesenquimal , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Invasividad Neoplásica , Linfocitos T Reguladores/inmunología
13.
Gastrointest Disord (Basel) ; 3(3): 100-112, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35531260

RESUMEN

Thoracic high dose radiation therapy (RT) for cancer has been associated with early and late cardiac toxicity. To assess altered rates of cardiomyocyte cell death due to RT we monitored changes in cardiomyocyte-specific, cell-free methylated DNA (cfDNA) shed into the circulation. Eleven patients with distal esophageal cancer treated with neoadjuvant chemoradiation to 50.4 Gy (RT) and concurrent carboplatin and paclitaxel were enrolled. Subjects underwent fasting blood draws prior to the initiation and after completion of RT as well as 4-6 months following RT. An island of six unmethylated CpGs in the FAM101A locus was used to identify cardiomyocyte-specific cfDNA in serum. After bisulfite treatment this specific cfDNA was quantified by amplicon sequencing at a depth of >35,000 reads/molecule. Cardiomyocyte-specific cfDNA was detectable before RT in the majority of patient samples and showed some distinct changes during the course of treatment and recovery. We propose that patient-specific cardiac damages in response to the treatment are indicated by these changes although co-morbidities may obscure treatment-specific events.

14.
Nat Rev Immunol ; 20(11): 649, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33009506
15.
Nat Rev Immunol ; 20(9): 521, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32737462
16.
Nat Rev Immunol ; 20(8): 463, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32636476
17.
Immunity ; 52(6): 910-941, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32505227

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people worldwide, igniting an unprecedented effort from the scientific community to understand the biological underpinning of COVID19 pathophysiology. In this Review, we summarize the current state of knowledge of innate and adaptive immune responses elicited by SARS-CoV-2 infection and the immunological pathways that likely contribute to disease severity and death. We also discuss the rationale and clinical outcome of current therapeutic strategies as well as prospective clinical trials to prevent or treat SARS-CoV-2 infection.


Asunto(s)
Betacoronavirus/fisiología , Infecciones por Coronavirus/inmunología , Neumonía Viral/inmunología , Animales , COVID-19 , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/terapia , Susceptibilidad a Enfermedades , Humanos , Inmunidad Innata , Memoria Inmunológica , Inflamación/inmunología , Inflamación/virología , Linfocitos/inmunología , Células Mieloides/inmunología , Pandemias , Neumonía Viral/diagnóstico , Neumonía Viral/patología , Neumonía Viral/terapia , SARS-CoV-2
18.
Nat Rev Immunol ; 20(8): 461, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32572247
19.
Nat Rev Immunol ; 20(7): 408, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32504060
20.
Nat Rev Immunol ; 20(7): 406, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32409740
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...