Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Biomater Sci Eng ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38778794

RESUMEN

Frequent blood glucose monitoring is a crucial routine for diabetic patients. Traditional invasive methods can cause discomfort and pain and even pose a risk of infection. As a result, researchers have been exploring noninvasive techniques. However, a limited number of products have been developed for the market due to their high cost. In this study, we developed a low-cost, highly accessible, and noninvasive contact lens-based glucose monitoring system. We functionalized the surface of the contact lens with boronic acid, which has a strong but reversible binding affinity to glucose. To achieve facile conjugation of boronic acid, we utilized a functional coating layer called poly(tannic acid). The functionalized contact lens binds to glucose in body fluids (e.g., tear) and releases it when soaked in an enzymatic cocktail, allowing for the glucose level to be quantified through a colorimetric assay. Importantly, the transparency and oxygen permeability of the contact lens, which are crucial for practical use, were maintained after functionalization, and the lenses showed high biocompatibility. Based on the analysis of colorimetric data generated by the smartphone application and ultraviolet-visible (UV-vis) spectra, we believe that this contact lens has a high potential to be used as a smart diagnostic tool for monitoring and managing blood glucose levels.

2.
Adv Sci (Weinh) ; : e2401951, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38685587

RESUMEN

This work demonstrates a method to design photonic surfaces by combining femtosecond laser processing with the inverse design capabilities of tandem neural networks that directly link laser fabrication parameters to their resulting textured substrate optical properties. High throughput fabrication and characterization platforms are developed that generate a dataset comprising 35280 unique microtextured surfaces on stainless steel with corresponding measured spectral emissivities. The trained model utilizes the nonlinear one-to-many mapping between spectral emissivity and laser parameters. Consequently, it generates predominantly novel designs, which reproduce the full range of spectral emissivities (average root-mean-squared-error < 2.5%) using only a compact region of laser parameter space 25 times smaller than what is represented in the training data. Finally, the inverse design model is experimentally validated on a thermophotovoltaic emitter design application. By synergizing laser-matter interactions with neural network capabilities, the approach offers insights into accelerating the discovery of photonic surfaces, advancing energy harvesting technologies.

3.
Sci Adv ; 9(12): eadf6397, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36947628

RESUMEN

Gigahertz (GHz) femtosecond (fs) lasers have opened possibilities for enhancing and controlling the laser machining quality to engineer the physicochemical properties of materials. However, fundamental understanding of laser-material interactions by GHz fs laser has remained unsolved due to the complexity of associated ablation dynamics. Here, we study the ablation dynamics of copper (Cu) by GHz fs bursts using in situ multimodal diagnostics, time-resolved scattering imaging, emission imaging, and emission spectroscopy. A combination of probing techniques reveals that GHz fs bursts rapidly remove molten Cu from the irradiated spot due to the recoil pressure exerted by following fs pulses. Material ejection essentially stops right after the burst irradiation due to the limited amount of remnant matter, combined with the suppressed heat conduction into the target material. Our work provides insights into the complex ablation mechanisms incurred by GHz fs bursts, which are critical in selecting optimal laser conditions in cross-cutting processing, micro/nano-fabrication, and spectroscopy applications.

4.
Sci Rep ; 13(1): 2285, 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36759588

RESUMEN

Laser-Induced Breakdown Spectroscopy (LIBS) is a promising technology for in-situ analysis of Plasma-Facing Components in magnetic confinement fusion facilities. It is of major interest to monitor the hydrogen isotope retention i.e. tritium and deuterium over many operation hours to guarantee safety and availability of the future reactor. In our studies we use ultraviolet femtosecond laser pulses to analyze tungsten (W) tiles that were exposed to a deuterium plasma in the linear plasma device PSI-2, which mimics conditions at the first wall. A high-resolution spectrometer is used to detect the Balmer-[Formula: see text] transition of the surface from implanted hydrogen isotopes (H and D). We use Calibration Free CF-LIBS to quantify the amount of deuterium stored in W. This proof-of-principle study shows the applicability of femtosecond lasers for the detection of low deuterium concentration as present in first wall material of prevailing fusion experiments.

5.
Nat Commun ; 11(1): 4848, 2020 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-32973166

RESUMEN

Polydopamine (PDA) is a simple and versatile conformal coating material that has been proposed for a variety of uses; however in practice its performance is often hindered by poor mechanical properties and high roughness. Here, we show that blue-diode laser annealing dramatically improves mechanical performance and reduces roughness of PDA coatings. Laser-annealed PDA (LAPDA) was shown to be >100-fold more scratch resistant than pristine PDA and even better than hard inorganic substrates, which we attribute to partial graphitization and covalent coupling between PDA subunits during annealing. Moreover, laser annealing provides these benefits while preserving other attractive properties of PDA, as demonstrated by the superior biofouling resistance of antifouling polymer-grafted LAPDA compared to PDA modified with the same polymer. Our work suggests that laser annealing may allow the use of PDA in mechanically demanding applications previously considered inaccessible, without sacrificing the functional versatility that is so characteristic of PDA.


Asunto(s)
Indoles/química , Indoles/efectos de la radiación , Rayos Láser , Polímeros/química , Polímeros/efectos de la radiación , Incrustaciones Biológicas , Materiales Biocompatibles Revestidos/química , Ensayo de Materiales , Propiedades de Superficie
6.
Adv Healthc Mater ; 9(8): e1901373, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32090507

RESUMEN

Cardiac tissues are able to adjust their contractile behavior to adapt to the local mechanical environment. Nonuniformity of the native tissue mechanical properties contributes to the development of heart dysfunctions, yet the current in vitro cardiac tissue models often fail to recapitulate the mechanical nonuniformity. To address this issue, a 3D cardiac microtissue model is developed with engineered mechanical nonuniformity, enabled by 3D-printed hybrid matrices composed of fibers with different diameters. When escalating the complexity of tissue mechanical environments, cardiac microtissues start to develop maladaptive hypercontractile phenotypes, demonstrated in both contractile motion analysis and force-power analysis. This novel hybrid system could potentially facilitate the establishment of "pathologically-inspired" cardiac microtissue models for deeper understanding of heart pathology due to nonuniformity of the tissue mechanical environment.


Asunto(s)
Corazón , Ingeniería de Tejidos , Humanos , Fenómenos Mecánicos , Contracción Muscular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...