Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
2.
Sci Total Environ ; 912: 169204, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38104814

RESUMEN

Accurate estimation of emissions from industrial point sources is crucial in understanding the effectiveness of reduction efforts and establishing reliable emission inventories. In this study, we employ an airborne Chemical Ionization Mass Spectrometry (CIMS) instrument to quantify sulfur dioxide (SO2) emissions from prominent industrial facilities in South Korea, including power plants, a steel mill, and a petrochemical facility. Our analysis utilizes the box mass balance technique to derive SO2 emissions and associated uncertainty. We evaluate the interpolation methods between 2D kriging and 3D radial basis function. The results demonstrate that the total uncertainty of the box mass balance technique ranges from 5 % to 28 %, with an average of 20 %. Mixing ratio ground extrapolation from the lowest altitude of the airborne sampling to the ground emerges as the dominant source of uncertainty, followed by the determination of the boundary layer height. Adequate sampling at multiple altitudes is found to be essential in reducing the overall uncertainty by capturing the full extent of the plume. Furthermore, we assess the uncertainty of the single-height transect mass balance method commonly employed in previous studies. Our findings reveal an average precision of 47 % for this method, with the potential for overestimating emissions by up to 206 %. Samplings at fewer altitudes or with larger altitude gaps increase the risk of under-sampling and elevate method uncertainties. Therefore, this study provides a quantitative basis to evaluate previously airborne observational emission constraints.

3.
Nanomaterials (Basel) ; 13(20)2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37887931

RESUMEN

Zinc oxide (ZnO) is a promising material for nitrogen dioxide (NO2) gas sensors because of its nontoxicity, low cost, and small size. We fabricated one-dimensional (1D) and zero-dimensional (0D) convergence gas sensors activated via ultraviolet (UV) photonic energy to sense NO2 gas at room temperature. One-dimensional ZnO nanorod (ZNR)-based and ZnO nanotube (ZNT)-based gas sensors were synthesized using a simple hydrothermal method. All the sensors were tested under UV irradiation (365 nm) so that they could be operated at room temperature rather than a high temperature. In addition, we decorated 0D Pt nanoparticles (NPs) on the gas sensors to further improve their sensing responsivity. The NO2-sensing response of the ZNT/Pt NP convergence gas sensor was 2.93 times higher than that of the ZNR gas sensor. We demonstrated the complex effects of UV radiation on 1D ZnO nanostructures and 0D metal nanostructures in NO2 gas sensing.

4.
ACS Appl Mater Interfaces ; 15(18): 22574-22579, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37104725

RESUMEN

Conductive fibers are core materials in textile electronics for the sustainable operation of devices under mechanical stimuli. Conventional polymer-metal core-sheath fibers were employed as stretchable electrical interconnects. However, their electrical conductivity is severely degraded by the rupture of metal sheaths at low strains. Because the core-sheath fibers are not intrinsically stretchable, designing a stretchable architecture of interconnects based on the fibers is essential. Herein, we introduce nonvolatile droplet-conductive microfiber arrays as stretchable interconnects by employing interfacial capillary spooling, motivated by the reversible spooling of capture threads in a spider web. Polyurethane (PU)-Ag core-sheath (PU@Ag) fibers were prepared by wet-spinning and thermal evaporation. When the fiber was placed on a silicone droplet, a capillary force was generated at their interface. The highly soft PU@Ag fibers were fully spooled within the droplet and reversibly uncoiled when a tensile force was applied. Without mechanical failures of the Ag sheaths, an excellent conductivity of 3.9 × 104 S cm-1 was retained at a strain of 1200% for 1000 spooling-uncoiling cycles. A light-emitting diode connected to a multiarray of droplet-PU@Ag fibers exhibited stable operation during spooling-uncoiling cycles.

5.
BMC Infect Dis ; 23(1): 32, 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36658559

RESUMEN

BACKGROUND: Nontuberculous mycobacterial lung disease (NTM-LD) and Mycobacterium tuberculosis lung disease (MTB-LD) have similar clinical characteristics. Therefore, NTM-LD is sometimes incorrectly diagnosed with MTB-LD and treated incorrectly. To solve these difficulties, we aimed to distinguish the two diseases in chest X-ray images using deep learning technology, which has been used in various fields recently. METHODS: We retrospectively collected chest X-ray images from 3314 patients infected with Mycobacterium tuberculosis (MTB) or nontuberculosis mycobacterium (NTM). After selecting the data according to the diagnostic criteria, various experiments were conducted to create the optimal deep learning model. A performance comparison was performed with the radiologist. Additionally, the model performance was verified using newly collected MTB-LD and NTM-LD patient data. RESULTS: Among the implemented deep learning models, the ensemble model combining EfficientNet B4 and ResNet 50 performed the best in the test data. Also, the ensemble model outperformed the radiologist on all evaluation metrics. In addition, the accuracy of the ensemble model was 0.85 for MTB-LD and 0.78 for NTM-LD on an additional validation dataset consisting of newly collected patients. CONCLUSIONS: In previous studies, it was known that it was difficult to distinguish between MTB-LD and NTM-LD in chest X-ray images, but we have successfully distinguished the two diseases using deep learning methods. This study has the potential to aid clinical decisions if the two diseases need to be differentiated.


Asunto(s)
Enfermedades Pulmonares , Infecciones por Mycobacterium no Tuberculosas , Mycobacterium tuberculosis , Neumonía , Humanos , Estudios Retrospectivos , Rayos X , Infecciones por Mycobacterium no Tuberculosas/diagnóstico por imagen , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Micobacterias no Tuberculosas , Aprendizaje Automático
6.
Clin Biochem ; 113: 21-28, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36603804

RESUMEN

OBJECTIVES: Rapid and accurate laboratory tests are essential to support clinical decision-making. Despite the various efforts to control quality in the laboratory, our outpatient chemistry turnaround time (TAT) has deteriorated since 2018. Moreover, these difficulties have accelerated further due to the COVID-19 pandemic. Therefore, we aimed to improve laboratory work efficiency by identifying and eliminating the causes of reduced laboratory work efficiency. DESIGN & METHODS: We surveyed to identify tasks that reduce work efficiency. Based on our survey, a new-concept of work assistance middleware linked to laboratory information system (LIS) was developed. The middleware supports test end-time prediction, automatic real-time TAT monitoring, and urgent test requests so that medical technologists can focus on their chemistry tests. The developed middleware was used for 6 months in laboratory and outpatient clinics, and its effectiveness was evaluated. RESULTS: The median TAT for outpatient chemistry tests was reduced by 6.6 min, from 72.4 min to 65.8 min. And not only did the maximum TAT for the sample decrease from 353 min to 214 min, but the proportion of samples exceeding the TAT target (120 min) also decreased by 77%; from 2.00% in 2010 (1,905 out of 94,989 samples) to 0.46% in 2021 (453 out of 98,117 samples). 2,199 samples were urgently requested through middleware, and they were processed about 15% faster than other samples, effectively performing urgent tests. The test end-time prediction showed an error of 8.6 min in the evaluation using the MAE (Mean Absolute Error) index. CONCLUSIONS: Through this study, the quality and efficiency of the laboratory were improved, and while reducing the workload of medical staff, it contributed to enhancing patient safety and satisfaction.


Asunto(s)
COVID-19 , Sistemas de Información en Laboratorio Clínico , Humanos , Pacientes Ambulatorios , Mejoramiento de la Calidad , Pandemias/prevención & control , Factores de Tiempo , COVID-19/diagnóstico , Pruebas de Química Clínica
7.
Biochim Biophys Acta Mol Basis Dis ; 1868(11): 166516, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35940382

RESUMEN

Immune checkpoint inhibitors (ICIs) offer improved survival for patients with advanced malignant melanomas. However, only a subset of these patients exhibit an objective response rate of 10-40 % with ICIs. We aimed to ascertain the effects of RNA signatures and the spatial distribution of immune cells on the treatment outcomes of patients with malignant melanomas undergoing ICI therapy. Clinical data were retrospectively collected from ICI-treated patients with malignant melanoma; RNA expression profiles were examined via next-generation sequencing, whereas the composition, density, and spatial distribution of immune cells were determined via multiplex immunohistochemistry. Patients with poor and good responses to ICIs showed significant differences in mRNA expression profiles. Different spatial distributions of T-cells, macrophages, and NK cells as well as RNA signatures of immune-related genes were found to be closely related to therapeutic outcomes in ICI-treated patients with malignant melanomas. The spatial distributions of PD-1+ T-cells and activated M1 macrophages showed a significant correlation with favorable responses to ICIs. Our findings highlight the clinical relevance of the spatial proximity of immune cell subsets in the treatment outcomes of metastatic malignant melanoma.


Asunto(s)
Melanoma , Receptor de Muerte Celular Programada 1 , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Macrófagos/metabolismo , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/metabolismo , Receptor de Muerte Celular Programada 1/genética , ARN , ARN Mensajero , Estudios Retrospectivos , Neoplasias Cutáneas , Melanoma Cutáneo Maligno
8.
Cancers (Basel) ; 14(3)2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35158782

RESUMEN

The alteration of the cellular metabolism is a hallmark of glioma. The high glycolytic phenotype is a critical factor in the pathogenesis of high-grade glioma, including glioblastoma multiforme (GBM). GBM has been stratified into three subtypes as the proneural, mesenchymal, and classical subtypes. High glycolytic activity was found in mesenchymal GBM relative to proneural GBM. NADPH oxidase 2 (NOX2) has been linked to cellular metabolism and epithelial-mesenchymal transition (EMT) in tumors. The role of NOX2 in the regulation of the high glycolytic phenotype and the gain of the mesenchymal subtype in glioma remain unclear. Here, our results show that the levels of NOX2 were elevated in patients with GBM. NOX2 induces hexokinase 2 (HK2)-dependent high glycolytic activity in U87MG glioma cells. High levels of NOX2 are correlated with high levels of HK2 and glucose uptake in patients with GBM relative to benign glioma. Moreover, NOX2 increases the expression of mesenchymal-subtype-related genes, including COL5A1 and FN1 in U87MG glioma cells. High levels of NOX2 are correlated with high levels of COL5A1 and the accumulation of extracellular matrix (ECM) in patients with GBM relative to benign glioma. Furthermore, high levels of HK2 are correlated with high levels of COL5A1 in patients with GBM relative to benign glioma. Our results suggest that NOX2-induced high glycolytic activity contributes to the gain of the COL5A1-mediated mesenchymal phenotype in GBM.

9.
Toxics ; 10(1)2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35051080

RESUMEN

Since the onset of the COVID-19 pandemic, there has been a growing demand for effective and safe disinfectants. A novel use of chlorine dioxide (ClO2) gas, which can satisfy such demand, has been reported. However, its efficacy and safety remain unclear. For the safe use of this gas, the stable release of specific concentrations is a must. A new type of ClO2 generator called Dr.CLOTM has recently been introduced. This study aimed to investigate: (1) the effects of Dr.CLOTM on inhibiting adenoviral amplification on human bronchial epithelial (HBE) cells; and (2) the acute inhalation safety of using Dr.CLOTM in animal models. After infecting HBE cells with a recombinant adenovirus, the inhibitory power of Dr.CLOTM on the virus was expressed as IFU/mL in comparison with the control group. The safety of ClO2 gas was indirectly predicted using mice by measuring single-dose inhalation toxicity in specially designed chambers. Dr.CLOTM was found to evaporate in a very constant concentration range at 0-0.011 ppm/m3 for 42 days. In addition, 36-100% of adenoviral amplification was suppressed by Dr.CLOTM, depending on the conditions. The LC50 of ClO2 gas to mice was approximately 68 ppm for males and 141 ppm for females. Histopathological evaluation showed that the lungs of female mice were more resistant to the toxicity from higher ClO2 gas concentrations than those of male mice. Taken together, these results indicate that Dr.CLOTM can be used to provide a safe indoor environment due to its technology that maintains the stable concentration and release of ClO2 gas, which could suppress viral amplification and may prevent viral infections.

10.
Front Artif Intell ; 5: 1064371, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36744111

RESUMEN

Due to the structural growth of e-commerce platforms, the frequency of exchange of opinions and the number of online reviews of platform participants related to products are increasing. However, given the growth of fake reviews, the corresponding growth in the quality of online reviews seems to be slow, at best. The number of cases of harm to retailers and customers caused by malicious false reviews is steadily increasing every year. In this context, it is becoming difficult for users to determine useful reviews amid a flood of information. As a result, the intrinsic value of online reviews that reduce uncertainty in pre-purchase decisions is blurred, and e-commerce platforms are on the verge of losing credibility and traffic. Through this study, we intend to present solutions related to review filtering and classification by constructing a model for judging the authenticity and usefulness of online reviews using machine learning.

11.
Sci Rep ; 11(1): 12717, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34135433

RESUMEN

This study aims to improve the efficiency of task switching in hospital laboratories. In a laboratory, several medical technicians perform multiple tasks. Technicians are not aware of the marginal amount of time it takes to switch between tasks, and this accumulation of lost minutes can cause the technician to worry more about the remaining working time than work quality. They rush through their remaining tasks, thereby rendering their work less efficient. For time optimization, we identified work changeover times to help maintain the work quality in the laboratory while reducing the number of task switching instances. We used the turnaround time (TAT) compliance rate of emergency room samples as an indicator to evaluate laboratory performance and the number of task switching instances as an index of the task performer perspective (TPP). We experimented with a monitoring system that populates the time for sample classification according to the optimal time for task switching. Through the proposed methodology, we successfully reduced not only the instances of task switching by 10% but also the TAT non-compliance rate from 4.97 to 2.66%. Consequently, the introduction of new methodology has greatly increased work efficiency.

12.
J Ethnopharmacol ; 266: 113403, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-32971160

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The dried root of Paeonia lactiflora Pall. (Radix Paeoniae) has been traditionally used to treat various inflammatory diseases in many Asian countries. AIM OF THE STUDY: Cisplatin is a broad-spectrum anticancer drug used in diverse types of cancer. However, muscle wasting is a common side effect of cisplatin chemotherapy. This study aimed to elucidate the effects of an ethanol extract of the root of Paeonia lactiflora Pall. (Radix Paeoniae, RP) on cisplatin-induced muscle wasting along with its molecular mechanism. MATERIAL AND METHODS: C57BL/6 mice were intraperitoneally injected with cisplatin and orally treated with RP. Megestrol acetate was used as a comparator drug. Skeletal muscle mass was measured as the weight of gastrocnemius and quadriceps muscles, and skeletal muscle function was measured by treadmill running time and grip strength. Skeletal muscle tissues were analyzed by RNAseq, western blotting, ELISA, and immunofluorescence microscopy. RESULTS: In mice treated with cisplatin, skeletal muscle mass and skeletal muscle function were significantly reduced. However, oral administration of RP significantly restored skeletal muscle mass and function in the cisplatin-treated mice. In the skeletal muscle tissues of the cisplatin-treated mice, RP downregulated NF-κB signaling and cytokine levels. RP also downregulated muscle-specific ubiquitin E3 ligases, resulting in the restoration of myosin heavy chain (MyHC) and myoblast determination protein (MyoD), which play crucial roles in muscle contraction and muscle differentiation, respectively. CONCLUSION: RP restored skeletal muscle function and mass in cisplatin-treated mice by restoring the muscle levels of MyHC and MyoD proteins via downregulation of muscle-specific ubiquitin E3 ligases as well as muscle NF-κB signaling and cytokine levels.


Asunto(s)
Cisplatino/toxicidad , Atrofia Muscular/prevención & control , Paeonia/química , Extractos Vegetales/farmacología , Animales , Antineoplásicos/toxicidad , Citocinas/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Femenino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Atrofia Muscular/inducido químicamente , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Ubiquitina-Proteína Ligasas/metabolismo
13.
J Biomol Struct Dyn ; 39(6): 2133-2151, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32189581

RESUMEN

The function of acetaldehyde dehydrogenase 1 (ALDH1) has been gradually elucidated in several diseases, especially in various cancers. However, the role of ALDH1 in skin-related diseases has been mostly unknown. Previously, we found that ALDH1 is involved in the pathogenesis of atopic dermatitis (AD). In this study, we used high-throughput screening (HTS) approaches to identify critical factors associated with ALDH1 in human keratinocytes to reveal its functions in skin. We overexpressed ALDH1 in human HaCaT keratinocytes and then conducted serial HTS studies, a DNA microarray and antibody array integrated with bioinformatics algorithms. Together, those tests identified several novel genes associated with the function of ALDH1 in keratinocytes, as well as AD, including CTSG and CCL11. In particular, GNB3, GHSR, TAS2R9, FFAR1, TAS2R16, CCL21, GPR32, NPFFR1, GPR15, FBXW12, CCL19, EDNRA, FFAR3, and RXFP3 proteins were consistently detected as hub proteins in the PPI maps. By integrating the datasets obtained from these HTS studies and using the strengths of each method, we obtained new insights into the functional role of ALDH1 in skin keratinocytes. The approach used here could contribute to the clinical understanding of ALDH1-associated applications for the treatment of AD.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Familia de Aldehído Deshidrogenasa 1 , Biología Computacional , Dermatitis Atópica , Retinal-Deshidrogenasa , Humanos , Queratinocitos , Análisis por Micromatrices
14.
Entropy (Basel) ; 22(8)2020 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-33286647

RESUMEN

Multilabel feature selection is an effective preprocessing step for improving multilabel classification accuracy, because it highlights discriminative features for multiple labels. Recently, multi-population genetic algorithms have gained significant attention with regard to feature selection studies. This is owing to their enhanced search capability when compared to that of traditional genetic algorithms that are based on communication among multiple populations. However, conventional methods employ a simple communication process without adapting it to the multilabel feature selection problem, which results in poor-quality final solutions. In this paper, we propose a new multi-population genetic algorithm, based on a novel communication process, which is specialized for the multilabel feature selection problem. Our experimental results on 17 multilabel datasets demonstrate that the proposed method is superior to other multi-population-based feature selection methods.

15.
Int Immunopharmacol ; 88: 107002, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33182035

RESUMEN

3,4,5-Trihydroxycinnamic acid (THCA) has been reported to possess anti-inflammatory activity. However, the effect of THCA for treating allergic asthma was unknown. Therefore, in the present study, the anti-asthmatic effects of THCA were studied in both in vitro and in vivo studies. In phorbol 12-myristate 13-acetate (PMA)-stimulated A549 airway epithelial cells, THCA pretreatment decreased the mRNA expression and secretion of interleukin (IL)-8, monocyte chemoattractant protein-1 (MCP-1), and intercellular adhesion molecules 1 (ICAM-1), and reduced the mRNA expression of matrix metalloproteinase 9 (MMP-9). THCA also inhibited PMA-induced protein kinase B (AKT), mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) activation in A549 cells. In lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages, THCA pretreatment suppressed the mRNA expression of ICAM-1 and MMP-9. In addition, THCA suppressed the adhesion of EOL and A549 cells. In ovalbumin (OVA)-administered asthmatic mice, THCA exerted inhibitory activity on IL-5, IL-13, and MCP-1 in bronchoalveolar lavage fluid (BALF) and on OVA-specific immunoglobulin E (IgE) in serum. THCA attenuated the numbers of inflammatory cells in BALF and the influx of inflammatory cell in lung tissues. Furthermore, THCA downregulated the levels of inducible nitric oxide (iNOS), cyclooxygenase-2 (COX-2), and leukotriene B4 (LTB4) expression, mucus production and CREB phosphorylation as well as Penh value. These effects were accompanied by suppression of AKT, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and NF-κB activation. Therefore, the results of the current study suggest that THCA may be a valuable adjuvant or therapeutic in the prevention or treatment of allergic asthma.


Asunto(s)
Asma/inducido químicamente , Asma/tratamiento farmacológico , Cinamatos/farmacología , Macrófagos/efectos de los fármacos , Animales , Adhesión Celular/efectos de los fármacos , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Línea Celular Tumoral , Quimiocinas/genética , Quimiocinas/metabolismo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Ratones Endogámicos BALB C , Ovalbúmina/toxicidad , Células RAW 264.7 , Distribución Aleatoria
16.
Genes (Basel) ; 11(10)2020 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-32987959

RESUMEN

Watermelon (Citrullus lanatus) is an economically important fruit crop grown for consumption of its large edible fruit flesh. Pentatricopeptide-repeat (PPR) encoding genes, one of the large gene families in plants, are important RNA-binding proteins involved in the regulation of plant growth and development by influencing the expression of organellar mRNA transcripts. However, systematic information regarding the PPR gene family in watermelon remains largely unknown. In this comprehensive study, we identified and characterized a total of 422 C. lanatus PPR (ClaPPR) genes in the watermelon genome. Most ClaPPRs were intronless and were mapped across 12 chromosomes. Phylogenetic analysis showed that ClaPPR proteins could be divided into P and PLS subfamilies. Gene duplication analysis suggested that 11 pairs of segmentally duplicated genes existed. In-silico expression pattern analysis demonstrated that ClaPPRs may participate in the regulation of fruit development and ripening processes. Genotyping of 70 lines using 4 single nucleotide polymorphisms (SNPs) from 4 ClaPPRs resulted in match rates of over 0.87 for each validated SNPs in correlation with the unique phenotypes of flesh color, and could be used in differentiating red, yellow, or orange watermelons in breeding programs. Our results provide significant insights for a comprehensive understanding of PPR genes and recommend further studies on their roles in watermelon fruit growth and ripening, which could be utilized for cultivar development of watermelon.


Asunto(s)
Citrullus/genética , Frutas/genética , Marcadores Genéticos , Genoma de Planta , Proteínas de Plantas/genética , Secuencias Repetitivas de Ácidos Nucleicos , Citrullus/crecimiento & desarrollo , Color , Frutas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Fenotipo , Filogenia , Fitomejoramiento , Polimorfismo de Nucleótido Simple
17.
J Pharm Sci ; 109(12): 3660-3667, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32987091

RESUMEN

Emodin exerts anti-inflammatory and anti-cancer effects. However, its poor water solubility limits development into a pharmaceutical product. Although an emodin-nicotinamide cocrystal (ENC) with improved dissolution rate was proposed as a potential candidate, crystallization back to emodin after dissolution diminished the advantage of the cocrystal approach. The objectives of this study were to identify a crystallization inhibitor to maintain the emodin supersaturation generated by ENC dissolution, and to examine its effect on oral pharmacokinetics of ENC. Among various polymers, polyvinylpyrrolidone K30 (PVP) was the most effective solubilizer and crystallization inhibitor. The solubility of ENC in a simulated intestinal fluid containing 1.5% PVP was 2-fold higher than that of emodin. However, comparison of oral pharmacokinetics in rats between ENC and emodin did not reflect such improved solubility of ENC in vitro relative to emodin. Instead, the plasma concentrations of a major metabolite of emodin showed a positive correlation with in vitro dissolution results, suggesting rapid gastrointestinal metabolism of emodin during absorption. In conclusion, PVP contributes to enhanced dissolution rates of ENC and inhibits crystallization of emodin in vivo, so that more metabolites can be formed and absorbed. Therefore, a metabolism inhibitor would be necessary to improve the oral bioavailability of emodin further.


Asunto(s)
Emodina , Povidona , Animales , Cristalización , Niacinamida , Ratas , Solubilidad
18.
Front Pharmacol ; 11: 521, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32425780

RESUMEN

Panax ginseng has been used as an herbal medicine for thousands of years. Most of its pharmacological effects are attributed to its constituent ginsenosides, including 20(S)-25-methoxyl-dammarane-3ß, 12ß, 20-triol (20(S)-25-OCH3-PPD), which is one of the protopanaxadiol type ginsenosides. It has been found to exhibit anticancer effects by interacting with multiple pharmacological pathways, such as the Wnt/ß-catenin, MDM2, ERK/MAPK, and STAT3 signaling pathways. However, its therapeutic potential could be limited by its low bioavailability mainly due to its low aqueous solubility. Thus, several studies have been conducted on its pharmacokinetics and its delivery systems, so as to increase its oral bioavailability. In this review, comprehensive information on its varying pharmacological pathways in cancer, as well as its pharmacokinetic behavior and pharmaceutical strategies, is provided. This information would be useful in the understanding of its diverse mechanisms and pharmacokinetics as an anticancer drug, leading to the design of superior 20(S)-25-OCH3-PPD-containing formulations that maximize its therapeutic potential.

19.
Sci Rep ; 10(1): 8258, 2020 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-32427899

RESUMEN

Interlayer coupling in graphene-based van der Waals (vdW) heterostructures plays a key role in determining and modulating their physical properties. Hence, its influence on the optical and electronic properties cannot be overlooked in order to promote various next-generation applications in electronic and opto-electronic devices based on the low-dimensional materials. Herein, the optical and electrical properties of the vertically stacked large area heterostructure of the monolayer graphene transferred onto a monolayer graphene oxide film are investigated. An effective and stable p-doping property of this structure is shown by comparison to that of the graphene device fabricated on a silicon oxide substrate. Through Raman spectroscopy and density functional theory calculations of the charge transport characteristics, it is found that graphene is affected by sustainable p-doping effects induced from underneath graphene oxide even though they have weak interlayer interactions. This finding can facilitate the development of various fascinating graphene-based heterostructures and extend their practical applications in integrated devices with advanced functionalities.

20.
Pharmaceutics ; 12(4)2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-32276508

RESUMEN

Topical imageplication of epidermal growth fctor (EGF) has been used to accelerate diabetic foot ulcers but with limited efficacy. In this study, we selected a complex coacervate (EGF-Coa) composed of the low molecular weight gelatin type A and sodium alginate as a novel delivery system for EGF, based on encapsulation efficiency and protection of EGF from protease. EGF-Coa enhanced in vitro migration of keratinocytes and accelerated wound healing in streptozotocin-induced diabetic mice with increased granulation and re-epithelialization. While diabetic wound sites without treatment showed downward growth of hyperproliferative epidermis along the wound edges with poor matrix formation, EGF-Coa treatment recovered horizontal migration of epidermis over the newly deposited dermal matrix. EGF-Coa treatment also resulted in reduced levels of proinflammatory cytokines IL-1, IL-6, and THF-α. Freeze-dried coacervates packaged in aluminum pouches were stable for up to 4 months at 4 and 25 °C in terms of appearance, purity by RP-HPLC, and in vitro release profiles. There were significant physical and chemical changes in relative humidity above 33% or at 37 °C, suggesting the requirement for moisture-proof packaging and cold chain storage for long term stability. We propose low molecular weight gelatin type A and sodium alginate (LWGA-SA) coacervates as a novel EGF delivery system with enhanced efficacy for chronic wounds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...