Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Sci Adv ; 10(22): eadm9673, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38820157

RESUMEN

Field transformation, as an extension of the transformation optics, provides a unique means for nonreciprocal wave manipulation, while the experimental realization remains a substantial challenge as it requires stringent material parameters of the metamaterials, e.g., purely nonreciprocal bianisotropic parameters. Here, we develop and demonstrate a nonreciprocal field transformation in a two-dimensional acoustic system, using an active metasurface that can independently control all constitutive parameters and achieve purely nonreciprocal Willis coupling. The field-transforming metasurface enables tailor-made field distribution manipulation, achieving localized field amplification by a predetermined ratio. The metasurface demonstrates the self-adaptive capability to various excitation conditions and can be extended to other geometric shapes. The metasurface also achieves nonreciprocal wave propagation for internal and external excitations, demonstrating a one-way acoustic device. The nonreciprocal field transformation not only extends the framework of the transformation theory for nonreciprocal wave manipulation but also holds great potential in applications such as ultrasensitive sensors and nonreciprocal communication.

2.
Phys Rev Lett ; 132(10): 103801, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38518334

RESUMEN

Programmable photonic circuits (PPCs) have garnered substantial interest for their potential in facilitating deep learning accelerations and universal quantum computations. Although photonic computation using PPCs offers ultrafast operation, energy-efficient matrix calculations, and room-temperature quantum states, its poor scalability hinders integration. This challenge arises from the temporally one-shot operation of propagating light in conventional PPCs, resulting in a light-speed increase in device footprints. Here we propose the concept of programmable photonic time circuits, utilizing time-cycle-based computations analogous to gate cycling in the von Neumann architecture and quantum computation. Our building block is a reconfigurable SU(2) time gate, consisting of two resonators with tunable resonances, and coupled via time-coded dual-channel gauge fields. We demonstrate universal U(N) operations with high fidelity using an assembly of the SU(2) time gates, substantially improving scalability from O(N^{2}) to O(N) in terms of both the footprint and the number of gates. This result paves the way for PPC implementation in very large-scale integration.

3.
Phys Rev Lett ; 132(3): 033803, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38307059

RESUMEN

Reducing geometrical complexity while preserving desired wave properties is critical for proof-of-concept studies in wave physics, as evidenced by recent efforts to realize photonic synthetic dimensions, isospectrality, and hyperbolic lattices. Laughlin's topological pump, which elucidates quantum Hall states in cylindrical geometry with a radial magnetic field and a time-varying axial magnetic flux, is a prime example of these efforts. Here we propose a two-dimensional dynamical photonic system for the topological pumping of pseudospin modes by exploiting synthetic frequency dimensions. The system provides the independent control of pseudomagnetic fields and electromotive forces achieved by the interplay between mode-dependent and mode-independent gauge fields. To address the axial open boundaries and azimuthal periodicity of the system, we define the adjusted local Chern marker with rotating azimuthal coordinates, proving the nontrivial topology of the system. We demonstrate the adiabatic pumping for crosstalk-free frequency conversion with wave front molding. Our approach allows for reproducing Laughlin's thought experiment at room temperature with a scalable setup.

4.
Phys Rev Lett ; 130(17): 176101, 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37172257

RESUMEN

We propose a concept called acoustic amplifying diode combining signal isolation and amplification in a single device. The signal is exponentially amplified in one incident direction with no reflection and is perfectly absorbed in another. The reflection is eliminated from the device in both directions with impedance matching, preventing backscattering to the signal source. Here, we demonstrate the amplifying diode using an active metamaterial with nonreciprocal Willis coupling. We also discuss the situation with the presence of both reciprocal and nonreciprocal Willis couplings for more flexibility in implementation. The coexistence of both amplifier and perfect absorber in opposite incident directions extends the regime of sound isolation and further enables applications in sensing and communication, in which nonreciprocity can play an important role.

5.
Nat Commun ; 14(1): 1853, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37012281

RESUMEN

Developing hardware for high-dimensional unitary operators plays a vital role in implementing quantum computations and deep learning accelerations. Programmable photonic circuits are singularly promising candidates for universal unitaries owing to intrinsic unitarity, ultrafast tunability and energy efficiency of photonic platforms. Nonetheless, when the scale of a photonic circuit increases, the effects of noise on the fidelity of quantum operators and deep learning weight matrices become more severe. Here we demonstrate a nontrivial stochastic nature of large-scale programmable photonic circuits-heavy-tailed distributions of rotation operators-that enables the development of high-fidelity universal unitaries through designed pruning of superfluous rotations. The power law and the Pareto principle for the conventional architecture of programmable photonic circuits are revealed with the presence of hub phase shifters, allowing for the application of network pruning to the design of photonic hardware. For the Clements design of programmable photonic circuits, we extract a universal architecture for pruning random unitary matrices and prove that "the bad is sometimes better to be removed" to achieve high fidelity and energy efficiency. This result lowers the hurdle for high fidelity in large-scale quantum computing and photonic deep learning accelerators.

6.
Nat Mater ; 22(4): 474-481, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36959502

RESUMEN

Metalenses are attractive alternatives to conventional bulky refractive lenses owing to their superior light-modulating performance and sub-micrometre-scale thicknesses; however, limitations in existing fabrication techniques, including high cost, low throughput and small patterning area, have hindered their mass production. Here we demonstrate low-cost and high-throughput mass production of large-aperture visible metalenses using deep-ultraviolet argon fluoride immersion lithography and wafer-scale nanoimprint lithography. Once a 12″ master stamp is imprinted, hundreds of centimetre-scale metalenses can be fabricated using a thinly coated high-index film to enhance light confinement, resulting in a substantial increase in conversion efficiency. As a proof of concept, an ultrathin virtual reality device created with the printed metalens demonstrates its potential towards the scalable manufacturing of metaphotonic devices.

7.
Sci Adv ; 8(40): eabo6220, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36206346

RESUMEN

Periodically driven systems are ubiquitously found in both classical and quantum regimes. In the field of photonics, these Floquet systems have begun to provide insight into how time periodicity can extend the concept of spatially periodic photonic crystals and metamaterials to the time domain. However, despite the necessity arising from the presence of nonreciprocal coupling between states in a photonic Floquet medium, a unified non-Hermitian band structure description remains elusive. We experimentally reveal the unique Bloch-Floquet and non-Bloch band structures of a photonic Floquet medium emulated in the microwave regime with a one-dimensional array of time-periodically driven resonators. These non-Hermitian band structures are shown to be two measurable distinct subsets of complex eigenfrequency surfaces of the photonic Floquet medium defined in complex momentum space.

8.
Opt Express ; 30(16): 28301-28311, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36299029

RESUMEN

The effect of deep subwavelength disorder in one-dimensional dichromic multilayer films on the optical transmission, localization length, and Goos-Hänchen shift around the critical angle is analyzed using sets of disordered multilayer films with different degrees of order metric τ. For each Gaussian-perturbed multilayer film designed by a Metropolis algorithm targeting the predetermined order metric τ, the numerically obtained localization length and transmission show excellent agreement with the recent theoretical analysis developed for disordered multilayer films, further revealing τ-dependence of the Goos-Hänchen shift across the critical angle. Emphasizing the role of deep subwavelength structures in disorder-induced transmission enhancement, our result thus paves the way toward the inverse design of a deep subwavelength disordered structural landscape for the targeted order metric τ or abnormal optical responses - including the Goos-Hänchen shift.

9.
Nano Lett ; 21(10): 4202-4208, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-33710897

RESUMEN

One of the most straightforward methods to actively control optical functionalities of metamaterials is to apply mechanical strain deforming the geometries. These deformations, however, leave symmetries and topologies largely intact, limiting the multifunctional horizon. Here, we present topology manipulation of metamaterials fabricated on flexible substrates by mechanically closing/opening embedded nanotrenches of various geometries. When an inner bending is applied on the substrate, the nanotrench closes and the accompanying topological change results in abrupt switching of metamaterial functionalities such as resonance, chirality, and polarization selectivity. Closable nanotrenches can be embedded in metamaterials of broadband spectrum, ranging from visible to microwave. The 99.9% extinction performance is robust, enduring more than a thousand bending cycles. Our work provides a wafer-scale platform for active quantum plasmonics and photonic application of subnanometer phenomena.

10.
Adv Mater ; 33(15): e2007831, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33599009

RESUMEN

As an efficient patterning method for nanostructures, nanocolloidal lithography (NCL) presents a controllable and scalable means for achieving a uniform and good sidewall profile, and a high aspect ratio. While high selectivity between the etching mask and targeted materials is also essential for NCL-based precision nanophotonic structures, its realization in multi-material nanophotonic structures still remains a challenge due to the dielectric- or metallic-material-dependent etching selectivity. Here, dispersion-controlled Au-NCL is proposed, which enables high selectivity for Al and SiO2 over a Au nanoparticle (Au-NP) mask. Utilizing the proposed process, wafer-scale, uniformly dispersed multi-material nanopawn structures (Au-NPs/Al-SiO2 cylinders) on an Al ultrathin film are realized, obtaining excellent vertical sidewall (≈90°) and aspect ratio (>1). The high sidewall verticality and aspect ratio of the nanopawn structures support optical modes highly sensitive to the excitation direction of incident waves through the mixing of the interface-gap-assisted localized surface plasmons (GLSPs) formed in between the Au-NP and Al-disk interface, and plasmonic Fabry-Pérot (FP) modes formed in between the Al-disk and Al substrate; complementary spectral responses between reflected and scattered light are also demonstrated. As an application example, information encryption based on the triple-channel (i.e., reflection, scattering, and transmission) angle-dependent complementary-color responses is presented.

11.
Nat Commun ; 11(1): 4842, 2020 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-32973187

RESUMEN

The vast amount of design freedom in disordered systems expands the parameter space for signal processing. However, this large degree of freedom has hindered the deterministic design of disordered systems for target functionalities. Here, we employ a machine learning approach for predicting and designing wave-matter interactions in disordered structures, thereby identifying scale-free properties for waves. To abstract and map the features of wave behaviors and disordered structures, we develop disorder-to-localization and localization-to-disorder convolutional neural networks, each of which enables the instantaneous prediction of wave localization in disordered structures and the instantaneous generation of disordered structures from given localizations. We demonstrate that the structural properties of the network architectures lead to the identification of scale-free disordered structures having heavy-tailed distributions, thus achieving multiple orders of magnitude improvement in robustness to accidental defects. Our results verify the critical role of neural network structures in determining machine-learning-generated real-space structures and their defect immunity.

12.
Phys Rev Lett ; 125(5): 053901, 2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32794858

RESUMEN

Non-Euclidean geometry, discovered by negating Euclid's parallel postulate, has been of considerable interest in mathematics and related fields for the description of geographical coordinates, Internet infrastructures, and the general theory of relativity. Notably, an infinite number of regular tessellations in hyperbolic geometry-hyperbolic lattices-are expected to extend Euclidean Bravais lattices and the consequent wave phenomena to non-Euclidean geometry. However, topological states of matter in hyperbolic lattices have yet to be reported. Here we investigate topological phenomena in hyperbolic geometry, exploring how the quantized curvature and edge dominance of the geometry affect topological phases. We report a recipe for the construction of a Euclidean photonic platform that inherits the topological band properties of a hyperbolic lattice under a uniform, pseudospin-dependent magnetic field, realizing a non-Euclidean analog of the quantum spin Hall effect. For hyperbolic lattices with different quantized curvatures, we examine the topological protection of helical edge states and generalize Hofstadter's butterfly, by employing two empirical parameters that measure the edge confinement and defect immunity. We demonstrate that the proposed platforms exhibit the unique spectral-magnetic sensitivity of topological immunity in highly curved hyperbolic planes. Our approach is applicable to general non-Euclidean geometry and enables the exploitation of infinite lattice degrees of freedom for band theory.

13.
Sci Rep ; 10(1): 11752, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32678182

RESUMEN

The notion of mode shaping based on evanescent coupling has been successfully applied in various fields of optics, such as in the dispersion engineering of optical waveguides. Here, we show that the same concept provides an opportunity for the seemingly different field of ultra-high-field MRI, addressing transmit RF magnetic field (B1+) inhomogeneity. In this work, treating the human phantom as a resonator, we employ an evanescently coupled high-index cladding layer to study the effects of the auxiliary potential on shaping the B1+ field distribution inside the phantom. Controlling the strength and coupling of the auxiliary potential ultimately determining the hybridized mode, we successfully demonstrate the global 2D homogenization of axial B1+ for a simplified cylindrical phantom and for a more realistic phantom of spheroidal geometry. The mode-shaping potentials with a magnetic permeability or material loss are also tested to offer additional degrees of freedom in the selection of materials as well as in the manipulation of the B1+ distribution, opening up the possibility of B1+ homogenization for 3D MRI scanning.

14.
Nat Commun ; 11(1): 251, 2020 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-31937781

RESUMEN

By designing tailor-made resonance modes with structured atoms, metamaterials allow us to obtain constitutive parameters outside their limited range from natural materials. Nonetheless, tuning the constitutive parameters depends on our ability to modify the physical structure or external circuits attached to the metamaterials, posing a fundamental challenge to the range of tunability in many real-time applications. Here, we propose the concept of virtualized metamaterials on their signal response function to escape the boundary inherent in the physical structure of metamaterials. By replacing the resonating physical structure with a designer mathematical convolution kernel with a fast digital signal processing circuit, we demonstrate a decoupled control of the effective bulk modulus and mass density of acoustic metamaterials on-demand through a software-defined frequency dispersion. Providing freely software-reconfigurable amplitude, center frequency, bandwidth of frequency dispersion, our approach adds an additional dimension to constructing non-reciprocal, non-Hermitian, and topological systems with time-varying capability as potential applications.

15.
Adv Sci (Weinh) ; 6(15): 1900771, 2019 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-31406676

RESUMEN

As an elementary processor of neural networks, a neuron performs exotic dynamic functions, such as bifurcation, repetitive firing, and oscillation quenching. To achieve ultrafast neuromorphic signal processing, the realization of photonic equivalents to neuronal dynamic functions has attracted considerable attention. However, despite the nonconservative nature of neurons due to energy exchange between intra- and extra-cellular regions through ion channels, the critical role of non-Hermitian physics in the photonic analogy of a neuron has been neglected. Here, a neuromorphic non-Hermitian photonic system ruled by parity-time symmetry is presented. For a photonic platform that induces the competition between saturable gain and loss channels, dynamical phases are classified with respect to parity-time symmetry and stability. In each phase, unique oscillation quenching functions and nonreciprocal oscillations of light fields are revealed as photonic equivalents of neuronal dynamic functions. The proposed photonic system for neuronal functionalities will become a fundamental building block for light-based neural signal processing.

16.
Opt Express ; 27(13): 18246-18261, 2019 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-31252771

RESUMEN

We propose an approach of steering the second harmonic (SH) emission from a single plasmonic structure, through local excitations of plasmon. The proposed idea is confirmed experimentally, by adjusting the incident beam position at the fundamental frequency, on a single plasmonic antenna. A significant directivity change ( ± 52°) for the SH emission is observed with submicrometer adjustment ( ± 250 nm) of the excitation beam position, over broadband SH frequencies. Providing a simple method of controlling the directivity of frequency-converted light, our approach paves the way to new design strategy for nonlinear optical devices with various nonlinear wavefronts.

17.
Phys Rev Lett ; 120(20): 203901, 2018 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-29864298

RESUMEN

Access to the transverse spin of light has unlocked new regimes in topological photonics. To achieve the transverse spin from nonzero longitudinal fields, various platforms that derive transversely confined waves based on focusing, interference, or evanescent waves have been suggested. Nonetheless, because of the transverse confinement inherently accompanying sign reversal of the field derivative, the resulting transverse spin handedness of each field experiences spatial inversion, which leads to a mismatch between the intensities of the field and its spin component and hinders the global observation of the transverse spin. Here, we reveal a globally pure transverse spin of the electric field in which the field intensity signifies the spin distribution. Starting from the target spin mode for the inverse design of required spatial profiles of anisotropic permittivities, we show that the elliptic-hyperbolic transition around the epsilon-near-zero permittivity allows for the global conservation of transverse spin handedness of the electric field across the topological interface between anisotropic metamaterials. Extending to the non-Hermitian regime, we develop annihilated transverse spin modes to cover the entire Poincaré sphere of the meridional plane. This result realizes the complete optical analogy of three-dimensional quantum spin states.

18.
Adv Sci (Weinh) ; 5(4): 1700900, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29721431

RESUMEN

The application of nanophotonic structures for organic solar cells (OSCs) is quite popular and successful, and has led to increased optical absorption, better spectral overlap with solar irradiances, and improved charge collection. Significant improvements in the power conversion efficiency (PCE) have also been reported, exceeding 11%. Nonetheless, with the given material properties of OSCs with low optical absorption, narrow spectrum, short transport length of carriers, and nonuniform photocarrier generations resulting from the nanophotonic structure, the PCE of single-junction OSCs has been stagnant over the past few years, at a barrier of 12%. Here, an ultrathin inverted OSC structure with the highest efficiency of ≈13.0%, while being made from widely used organic materials, is demonstrated. By introducing a smooth spatial corrugation to the vertical plasmonic cavity enclosing the active layer, in-plane propagation modes and hybridized Fabry-Perot cavity modes inside the corrugated cavity are derived to achieve an ultralow Q, uniform coverage of optical absorption, in addition to uniform photocarrier generation and transport. As the first demonstration of ultra-broadband absorption with the introduction of spatial corrugation to the ultrathin metal film electrode-cathode Fabry-Perot cavity, future applications of the same concept in other light-harvesting devices utilizing different materials and structures are expected.

19.
Phys Rev Lett ; 120(19): 193902, 2018 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-29799257

RESUMEN

The de Broglie-Bohm theory is one of the nonstandard interpretations of quantum phenomena that focuses on reintroducing definite positions of particles, in contrast to the indeterminism of the Copenhagen interpretation. In spite of intense debate on its measurement and nonlocality, the de Broglie-Bohm theory based on the reformulation of the Schrödinger equation allows for the description of quantum phenomena as deterministic trajectories embodied in the modified Hamilton-Jacobi mechanics. Here, we apply the Bohmian reformulation to Maxwell's equations to achieve the independent manipulation of optical phase evolution and energy confinement. After establishing the deterministic design method based on the Bohmian approach, we investigate the condition of optical materials enabling scattering-free light with bounded or random phase evolutions. We also demonstrate a unique form of optical confinement and annihilation that preserves the phase information of incident light. Our separate tailoring of wave information extends the notion and range of artificial materials.

20.
ACS Appl Mater Interfaces ; 10(10): 9188-9196, 2018 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-29460628

RESUMEN

In this study, 8 in. wafer-scale flexible polarization-dependent color filters with Ag-TiO2 composite nanowires have been fabricated using nanoimprint and E-beam evaporation. The filters change their color via a simple rotation of the polarizer. In addition, the color of the filter can be controlled by altering the thickness of the Ag and TiO2 nanowires deposited on the polymer patterns. Polarization-dependent color filters were realized by selective inhibition of transmission using the plasmonic resonance at the insulator/metal/insulator nanostructure interface, which occurs at particular wavelengths for the transverse magnetic polarizations. Special colors, including purple, blue, green, yellow, and pink, could be obtained with high transmission beyond 65% by varying the thickness of the deposited Ag and TiO2 nanowires on the periodic polymer pattern under transverse magnetic polarization. In addition, a continuous color change was achieved by varying the polarization angle. Last, numerical simulations were implemented in comparison with the experimental results, and the mechanism was explained. We believe that this simple and cost-effective method can be applied to processes such as anticounterfeiting and holographic imaging as well as to color displays.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA