Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(17)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37687607

RESUMEN

An ultra-wideband electromagnetic (EM) absorber is proposed. The proposed absorber consists of two thin metasurfaces, four dielectric layers, a glass fiber reinforced polymer (GFRP), and a carbon fiber reinforced polymer (CFRP) which works as a conductive reflector. The thin metasurfaces are accomplished with 1-bit pixelated patterns and optimized by a genetic algorithm. Composite materials of GFRP and CFRP are incorporated to improve the durability of the proposed absorber. From the full-wave simulation, more than 90% absorption rate bandwidth is computed from 2.2 to 18 GHz such that the fractional bandwidth is about 156% for the incidence angles from 0° to 30°. Absorptivity is measured using the Naval Research Laboratory (NRL) arch method in an EM anechoic environment. It was shown that the measured results correlated with the simulated results. In addition, the proposed absorber underwent high temperature and humidity tests under military environment test conditions in order to investigate its durability.

2.
Sensors (Basel) ; 22(8)2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35458902

RESUMEN

In this paper, experimental validation of high precision web handling for a two-actuator-based roll-to-roll (R2R) system is presented. To achieve this, the tension control loop is utilized to regulate the tension in the unwinder module, and the velocity loop is utilized to regulate the web speed in the rewinder module owing to the limitation of the number of actuators. Moreover, the radius estimation algorithm is applied to achieve an accurate web speed and the control sequence of the web handling in the longitudinal axis is developed to manipulate the web handling for convenience. Having these, the tension control performances are validated within ±0.79, ±1.32 and ±1.58 percent tension tracking error and 1.6, 1.53 and 1.33 percent web speed error at the speeds of 0.1 m/s, 0.2 m/s, and 0.3 m/s, respectively. The tension control performance is verified within ±0.3 N tracking error in the changes of the reference tension profile at 0.1 m/s web speed. Lastly, the air floating roller is used to minimize the friction terms and the inertia of the idle roller in the tension zone so that tension control performance can be better achieved during web transportation.

3.
Sci Rep ; 11(1): 23045, 2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34845258

RESUMEN

An ultrawideband electromagnetic metamaterial absorber is proposed that consists of double-layer metapatterns optimally designed by the genetic algorithm and printed using carbon paste. By setting the sheet resistance of the intermediate carbon metapattern to a half of that of the top one, it is possible to find an optimal intermediate metapattern that reflects and absorbs the EM wave simultaneously. By adding an absorption resonance via a constructive interference at the top metapattern induced by the reflection from the intermediate one, an ultrawideband absorption can be achieved without increasing the number of layers. Moreover, it is found that the metapatterns support the surface plasmon polaritons which can supply an additional absorption resonance as well as boost the absorption in a broad bandwidth. Based on the simulation, the [Formula: see text] absorption bandwidth is confirmed from 6.3 to 30.1 GHz of which the fractional bandwidth is 130.77[Formula: see text] for the normal incidence. The accuracy is verified via measurements well matched with the simulations. The proposed metamaterial absorber could not only break though the conventional concept that the number of layers should be increased to extend the bandwidth but also provide a powerful solution to realize a low-profile, lightweight, and low cost electromagnetic absorber.

4.
Rev Sci Instrum ; 92(10): 103906, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34717372

RESUMEN

Demand for high throughput manufacturing has recently increased in various fields, such as electronics, photonics, optical devices, and energy. Moreover, flexible electronic devices are indispensable in applications such as touch screens, transparent conductive electrodes, transparent film heaters, organic photovoltaics, organic light-emitting diodes, and battery. For these applications, a large-area roll-to-roll (R2R) process is a promising method for producing with high throughput. However, bending deformation of rollers is unavoidable in a large-scale R2R system, which produces non-uniformity in force distribution during processing and reduces the sample quality. In this study, we propose a new R2R imprinting module to mitigate the deformation by using an additional backup roller to achieve uniform force distribution. From numerical simulations, we found that there exists an optimal imprinting force for each backup roller length to obtain the best uniformity. Experimental results using a large-area pressure sensor verified the effectiveness of the proposed method. Finally, the R2R nanoimprint lithography process showed that the proposed method produces patterns of 100 nm width with uniform residual layer thickness, which are distributed across the substrate of 1.2 m width.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA