Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 364: 143105, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39153531

RESUMEN

Nitrogen fixation using low-temperature plasma, particularly in relation to plasma-treated water (PTW) and its chemical and physical properties, has received a renewed research focus. Dissolving highly concentrated nitrogen oxides (NOx = 1-3) generated by air discharge into water results in the formation of two aqueous oxiacids (nitrous and nitric acids; HNOy = 2,3) and their conjugates (nitrate and nitrite ions; NOy-). Nonlinear formation of these species in PTW with respect to plasma conditions has been observed; however, the significance of the time-varying NOx on this nonlinearity has not yet been thoroughly investigated. Here, we demonstrate real-time observations of HNOy/NOy- as well as NOx production in a surface dielectric barrier discharge reactor containing distilled water. Synchronized two optical absorption spectroscopy systems were employed to simultaneously measure gas-phase NOx and liquid-phase HNOy/NOy- in the plasma reactor operated under different oxygen contents of 5, 20, and 50%. Our results showed that reducing the oxygen content in the reactor accelerated the chemical transition from O3 and NO3 to NO1,2, leading to a predominance of nitrite in PTW. Specifically, the NO3-rich period was extended with increasing O2 content, resulting in the production of nitrate-dominant PTW at low pH levels. Our findings highlight the potential for the selective generation of HNOy/NOy- in PTW through the active and passive control of NOx in a plasma reactor. The direct, real-time observation of NOx-HNOy/NOy- conversion presented here has potential for improving the control and optimization of PTW, thereby enhancing its applicability.

2.
Molecules ; 28(9)2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37175292

RESUMEN

To the best of our knowledge, few studies have utilized cold plasma to improve soybean protein extraction yield and the functional properties of soybean protein. In this study, we aimed to assess the benefits of remote plasma treatments on soybean with respect to the utilization of soybean protein. This study involved two different sample forms (whole and crushed beans), two different plasma chemistry modes (ozone and nitrogen oxides [NOx = NO + NO2]), and a novel pressure-swing reactor. Crushed soybeans were significantly affected by NOx-mode plasma treatment. Crushed soybeans treated with NOx-mode plasma had the best outcomes, wherein the protein extraction yield increased from 31.64% in the control to 37.90% after plasma treatment. The water binding capacity (205.50%) and oil absorption capacity (267.67%) of plasma-treated soybeans increased to 190.88% and 246.23 % of the control, respectively. The emulsifying activity and emulsion stability slightly increased compared to those of the control. The secondary structure and surface hydrophobicity were altered. The remote plasma treatment of crushed soybeans increased soybean protein extraction yield compared to plasma-treated whole beans as well as untreated beans and altered the structural and physicochemical properties of soybean proteins.


Asunto(s)
Glycine max , Proteínas de Soja , Proteínas de Soja/química , Glycine max/química , Agua , Fenómenos Químicos , Interacciones Hidrofóbicas e Hidrofílicas
3.
Antioxidants (Basel) ; 11(11)2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36358586

RESUMEN

Peanut (Arachis hypogaea L.) shell, an abundant by-product of peanut production, contains a complex combination of organic compounds, including flavonoids. Changes in the total phenolic content, flavonoid content, antioxidant capacities, and skin aging-related enzyme (tyrosinase, elastase, and collagenase)-inhibitory activities of peanut shell were investigated after treatment in pressure swing reactors under controlled gas conditions using surface dielectric barrier discharge with different plasma (NOx and O3) and temperature (25 and 150 °C) treatments. Plasma treatment under ozone-rich conditions at 150 °C significantly affected the total phenolic (270.70 mg gallic acid equivalent (GAE)/g) and flavonoid (120.02 mg catechin equivalent (CE)/g) contents of peanut shell compared with the control (253.94 and 117.74 mg CE/g, respectively) (p < 0.05). In addition, with the same treatment, an increase in functional compound content clearly enhanced the antioxidant activities of components in peanut shell extracts. However, the NOx-rich treatment was significantly less effective than the O3 treatment (p < 0.05) in terms of the total phenolic content, flavonoid content, and antioxidant activities. Similarly, peanut shells treated in the reactor under O3-rich plasma conditions at 150 ℃ had higher tyrosinase, elastase, and collagenase inhibition rates (55.72%, 85.69%, and 86.43%, respectively) compared to the control (35.81%, 80.78%, and 83.53%, respectively). Our findings revealed that a reactor operated with O3-rich plasma-activated gas at 150 °C was better-suited for producing functional industrial materials from the by-products of peanuts.

4.
Sci Rep ; 11(1): 12206, 2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-34108606

RESUMEN

The global health crisis caused by the recent pandemic has led to increasing social demand for 'new normal' sanitizing and disinfecting facilities to fit our 'new normal' lives. Here, we introduce an inkjet-printed, thin-film plasma source applicable to dry disinfection processes. In contrast to conventional plasma reactors, the merits of plasma produced on a film include disposability, cost-effectiveness, and applicability to high-dimensional objects such as the human body. The developed flexible plasma film can be applied to a wide variety of shapes via origami-remaining plasma stable even when bent. However, electrode degradation has been a practical issue in the long-term operation of inkjet-printed plasma sources, which is troublesome from application perspectives. We focus on making the inkjet-printed electrode more plasma stress-resistant, thereby increasing its lifespan from a few minutes to two hours of continuous operation with optimal inkjet printing and passivation, thus increasing the practicality of the source. Considering the fact that ozone and nitrogen oxides are selectively produced by plasma, we implement a disposable pouch-type plasma source and examine its usefulness in extending the shelf life of food.

5.
Nature ; 592(7852): 49-53, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33790448

RESUMEN

Impinging gas jets can induce depressions in liquid surfaces, a phenomenon familiar to anyone who has observed the cavity produced by blowing air through a straw directly above a cup of juice. A dimple-like stable cavity on a liquid surface forms owing to the balance of forces among the gas jet impingement, gravity and surface tension1,2. With increasing gas jet speed, the cavity becomes unstable and shows oscillatory motion, bubbling (Rayleigh instability) and splashing (Kelvin-Helmholtz instability)3,4. However, despite its scientific and practical importance-particularly in regard to reducing cavity instability growth in certain gas-blown systems-little attention has been given to the hydrodynamic stability of a cavity in such gas-liquid systems so far. Here we demonstrate the stabilization of such instabilities by weakly ionized gas for the case of a gas jet impinging on water, based on shadowgraph experiments and computational two-phase fluid and plasma modelling. We focus on the interfacial dynamics relevant to electrohydrodynamic (EHD) gas flow, so-called electric wind, which is induced by the momentum transfer from accelerated charged particles to neutral gas under an electric field. A weakly ionized gas jet consisting of periodic pulsed ionization waves5, called plasma bullets, exerts more force via electrohydrodynamic flow on the water surface than a neutral gas jet alone, resulting in cavity expansion without destabilization. Furthermore, both the bidirectional electrohydrodynamic gas flow and electric field parallel to the gas-water interface produced by plasma interacting 'in the cavity' render the surface more stable. This case study demonstrates the dynamics of liquids subjected to a plasma-induced force, offering insights into physical processes and revealing an interdependence between weakly ionized gases and deformable dielectric matter, including plasma-liquid systems.

6.
J Agric Food Chem ; 68(8): 2357-2365, 2020 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-31967810

RESUMEN

Here, we investigated the effect of cold plasma (CP) on the biological activities of phloroglucinol. Phloroglucinol (7.92 and 15.84 mM in methanol) was treated with air dielectric barrier discharge plasma at 250 W. In vitro, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity and ferrous-reducing antioxidant power (FRAP) values of phloroglucinol increased in plasma treatment in a time-dependent manner. CP treatment of phloroglucinol decreased the lipid oxidation of oil emulsion during storage and increased the antimicrobial activity against Bacillus cereus, Escherichia coli O157:H7, and Staphylococcus aureus. Angiotensin-converting enzyme (ACE) inhibitory activity of phloroglucinol increased and total phenolic content decreased based on CP treatment. The CP-induced polymerization of phloroglocinol to phlorotannin derivatives was identified using high-performance liquid chromatography with UV detector and electrospray ionization/mass spectrometry (HPLC-UV-ESI/MS) method. Consequently, the polymer structure of phloroglucinol was found in the CP-treated phloroglucinol. In addition, CP enhances the biological activity of phloroglucinol and could be applied to bioactive materials in food and related industries.


Asunto(s)
Floroglucinol/química , Floroglucinol/farmacología , Gases em Plasma/química , Antibacterianos/química , Antibacterianos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Bacillus cereus/efectos de los fármacos , Bacillus cereus/crecimiento & desarrollo , Escherichia coli O157/efectos de los fármacos , Escherichia coli O157/crecimiento & desarrollo , Polimerizacion , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo
7.
Sci Rep ; 8(1): 10217, 2018 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-29976980

RESUMEN

Electron heating is a fundamental and multidisciplinary phenomenon in partially ionized gases, from the planet's ionosphere to laboratory-scale plasmas. Plasmas produced at ambient or reduced pressures have recently shown potential for scientific and industrial applications. However, electron heating, which is strongly coupled to the physicochemical properties of these plasmas, has been poorly understood. We experimentally found the rapid structural transition from non-local to local electron heating in collisional radio-frequency discharges at atmospheric-to-subatmospheric pressures. As the gas pressure decreased from 760 to 200 Torr, the time-averaged electron density increased from 1.3 × 1012 to 1.3 × 1013 cm-3, and the electron temperature decreased from 2.5 to 1.1 eV at the maximum allowable discharge current in the abnormal α-mode in the plasma bulk. The spatiotemporal evolution of the electron temperature clearly shows that the electron temperature increases uniformly throughout the bulk plasma region during sheath expansion and collapse at 760 Torr, but the electron heating weakens with sheath collapse as the gas pressure decreases.

8.
Sci Rep ; 8(1): 7516, 2018 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-29760408

RESUMEN

Determining the electron properties of weakly ionized gases, particularly in a high electron-neutral collisional condition, is a nontrivial task; thus, the mechanisms underlying the electron characteristics and electron heating structure in radio-frequency (rf) collisional discharges remain unclear. Here, we report the electrical characteristics and electron information in single-frequency (4.52 MHz and 13.56 MHz) and dual-frequency (a combination of 4.52 MHz and 13.56 MHz) capacitive discharges within the abnormal α-mode regime at atmospheric pressure. A continuum radiation-based electron diagnostic method is employed to estimate the electron density (ne) and temperature (Te). Our experimental observations reveal that time-averaged ne (7.7-14 × 1011 cm-3) and Te (1.75-2.5 eV) can be independently controlled in dual-frequency discharge, whereas such control is nontrivial in single-frequency discharge, which shows a linear increase in ne and little to no change in Te with increases in the rf input power. Furthermore, the two-dimensional spatiotemporal evolution of neutral bremsstrahlung and associated electron heating structures is demonstrated. These results reveal that a symmetric structure in electron heating becomes asymmetric (via a local suppression of electron temperature) as two-frequency power is simultaneously introduced.

9.
Nat Commun ; 9(1): 371, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29371666

RESUMEN

Understanding the interactions between ionized matter and neutral particles is a prerequisite for discovering their impact on natural phenomena. One such phenomenon is the electric wind, which supposedly occurs due to the charged particle-neutral coupling in systems of weakly ionized gases, but this mechanism remains unclear. Here, we report direct evidence that electric wind is caused by an electrohydrodynamic force generated by the charged particle drag as a result of the momentum transfer from electrons/ions to neutrals. The model experiment is based on a pulsed plasma jet as a source of weakly ionized gases generated in the helium gas at atmospheric pressure using Schlieren photography. Studying the helium gas flow trajectories at different discharge parameters allows one to distinguish between the effects of streamer propagation or space charge drift causing the electric wind as well as to determine the role of electrons and (positive) ions in wind generation.

10.
ACS Appl Mater Interfaces ; 9(50): 43470-43477, 2017 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-29215258

RESUMEN

Deadly diseases caused by pathogenic bacteria and viruses have increasingly victimized humans; thus, the importance of disinfection has increased in medical settings as well as in food and agricultural industries. Plasma contains multiple bactericidal agents, including reactive species, charged particles, and photons, which can have synergistic effects. In particular, the chemicals formed in aqueous solution during plasma exposure have the potential for high antibacterial activity against various bacterial infections. Here, we report the antibiotic potency of plasma-treated water (PTW). To illustrate the applicability of PTW for disinfecting biological substances, an Escherichia coli biofilm was used. We sought to identify the chemical species in PTW and investigate their separate effects on biofilm removal. Dielectric barrier discharge in ambient air was used to prepare the PTW and treat the biofilm directly. Hydrogen peroxide, ozone, and nitrites were identified as the long-lived reactive species in the PTW, whereas hydroxyl radicals and superoxide anions were identified as the short-lived reactive species in the PTW; all these species showed an ability to disinfect in biofilm removal.


Asunto(s)
Materiales Biocompatibles/química , Antibacterianos , Biopelículas , Desinfección , Escherichia coli
11.
Meat Sci ; 123: 151-156, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27718408

RESUMEN

The aims of the present study were to examine the use of a flexible thin-layer plasma system in inactivating bacteria and mold on beef jerky in a commercial package and to evaluate the physicochemical changes of the jerky. After plasma treatment for 10min, Escherichia coli O157:H7, Listeria monocytogenes, Salmonella Typhimurium, and Aspergillus flavus populations on the beef jerky were reduced by approximately 2 to 3Log CFU/g. No significant changes in metmyoglobin content, shear force, and myofibrillar fragmentation index were found in the plasma-treated beef jerky. On the other hand, the peroxide content and L⁎ value were decreased whereas the a⁎ and ΔE value were increased in the plasma-treated sample. Sensory evaluation indicated negative effects of plasma treatment on flavor, off-odor, and overall acceptability of the beef jerky. In conclusion, the flexible thin-layer plasma system could be employed as a means for decontamination of beef jerky, with slight changes to the physicochemical quality of the product.


Asunto(s)
Contaminación de Alimentos/análisis , Microbiología de Alimentos , Embalaje de Alimentos , Gases em Plasma , Carne Roja/microbiología , Animales , Bovinos , Recuento de Colonia Microbiana , Comportamiento del Consumidor , Seguridad de Productos para el Consumidor , Manipulación de Alimentos , Conservación de Alimentos , Calidad de los Alimentos , Enfermedades Transmitidas por los Alimentos/microbiología , Enfermedades Transmitidas por los Alimentos/prevención & control , Humanos , Productos de la Carne/microbiología , Metamioglobina/análisis , Miofibrillas/metabolismo , Odorantes , Peróxidos/análisis , Olfato , Gusto
12.
J Food Sci Technol ; 52(12): 8410-5, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26604423

RESUMEN

Bacterial biofilms are associated with numerous infections and problems in the health care and food industries. The aim of this study was to evaluate the bactericidal effect of an atmospheric pressure plasma (APP) jet on Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella Typhimurium biofilm formation on collagen casing (CC), polypropylene (PP) and polyethylene terephthalate (PET), which are widely used food container materials. The samples were treated separately with the APP jet at a 50-W input power for 5 and 10 min, and nitrogen (6 l per minute) gas combined with oxygen (10 standard cubic centimeters per minute) was used to produce the APP. The APP jet reduced the number of bacterial cells in a time-dependent manner. All pathogens attached to CC, PP, and PET were reduced by 3-4 log CFU/cm(2) by the 10-min APP treatment. The developed APP jet was effectively reduced biofilms on CC, PP, and PET.

13.
Meat Sci ; 108: 132-7, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26115346

RESUMEN

We investigated the possible use of atmospheric pressure plasma-treated water (PTW) as a nitrite source in curing process. Emulsion-type sausages were manufactured with PTW, celery powder containing nitrite, and synthetic sodium nitrite at a concentration of nitrite ion 70mgkg(-1). In terms of sausage quality, there were no noticeable effects of PTW on the total aerobic bacterial counts, color, and peroxide values of sausages compared with those of celery powder and sodium nitrite throughout 28days of storage at 4°C. Sausage with added PTW had lower concentrations of residual nitrite compared to those of added celery powder and sodium nitrite during the storage period (P<0.05). The sensory properties of PTW-treated and sodium nitrite-treated sausages were not different, whereas the sausage with added celery powder received the lowest scores in taste and acceptability. From the results, it is concluded that PTW can be used as a nitrite source equivalent to a natural curing agent.


Asunto(s)
Manipulación de Alimentos , Conservantes de Alimentos/análisis , Productos de la Carne/análisis , Nitrito de Sodio/análisis , Agua/química , Animales , Apium , Recuento de Colonia Microbiana , Color , Comportamiento del Consumidor , Emulsiones , Contaminación de Alimentos/prevención & control , Microbiología de Alimentos , Humanos , Concentración de Iones de Hidrógeno , Productos de la Carne/microbiología , Porcinos , Gusto
14.
Korean J Food Sci Anim Resour ; 35(5): 703-6, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26761900

RESUMEN

The interaction of plasma with liquid generates nitrogen species including nitrite (NO(-) 2). Therefore, the color developing capacity of plasma-treated water (PTW) as a nitrite source for meat curing was investigated in this study. PTW, which is generated by surface dielectric barrier discharge in air, and the increase of plasma treatment time resulted in increase of nitrite concentration in PTW. The PTW used in this study contains 46 ppm nitrite after plasma treatment for 30 min. To evaluate the effect of PTW on the cured meat color, meat batters were prepared under three different conditions (control, non-cured meat batter; PTW, meat batter cured with PTW; Sodium nitrite, meat batter cured with sodium nitrite). The meat batters were vacuum-packaged and cooked in a water-bath at 80℃ for 30 min. The typical color of cured meat developed in cooked meat batter treated with sodium nitrite or PTW. The lightness (L*) and yellowness (b*) values were similar in all conditions, whereas, the redness (a*) values of cooked meat batter with PTW and sodium nitrite (p<0.05) were significantly higher than the control. These data indicate that PTW can be used as a nitrite source in the curing process of meat without addition of other nitrite sources.

15.
Food Microbiol ; 46: 51-57, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25475266

RESUMEN

The effects of a flexible thin-layer dielectric barrier discharge (DBD) plasma system using a sealed package on microbial inactivation and quality attributes of fresh pork and beef were tested. Following a 10-min treatment, the microbial-load reductions of Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella Typhimurium were 2.04, 2.54, and 2.68 Log CFU/g in pork-butt samples and 1.90, 2.57, and 2.58 Log CFU/g in beef-loin samples, respectively. Colorimetric analysis showed that DBD-plasma treatment did not significantly affect L* values (lightness) of pork and beef samples, but lowered a* values (redness) significantly after 5- and 7.5-min exposures. The plasma treatment significantly influenced lipid oxidation only after a 10-min exposure. The texture of both types of meat was unaffected by plasma treatment. All sensory parameters of treated and non-treated samples were comparable except for taste, which was negatively influenced by the plasma treatment (P < 0.05). This thin-layer DBD-plasma system can be applied to inactivate foodborne pathogens. The observed minor deterioration of meat quality might be prevented by the use of hurdle technology.


Asunto(s)
Escherichia coli O157/efectos de la radiación , Irradiación de Alimentos/métodos , Listeria monocytogenes/efectos de la radiación , Carne/microbiología , Salmonella typhimurium/efectos de la radiación , Animales , Bovinos , Escherichia coli O157/crecimiento & desarrollo , Contaminación de Alimentos/análisis , Contaminación de Alimentos/prevención & control , Irradiación de Alimentos/instrumentación , Humanos , Listeria monocytogenes/crecimiento & desarrollo , Carne/análisis , Carne/efectos de la radiación , Viabilidad Microbiana/efectos de la radiación , Salmonella typhimurium/crecimiento & desarrollo , Porcinos , Gusto
16.
Food Microbiol ; 46: 46-50, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25475265

RESUMEN

Pathogen inactivation induced by atmospheric pressure dielectric barrier discharge (DBD) (250 W, 15 kHz, air discharge) produced in a rectangular plastic container and the effect of post-treatment storage time on inactivation were evaluated using agar plates and cheese slices. When agar plates were treated with plasma, populations of Escherichia coli, Salmonella Typhimurium, and Listeria monocytogenes showed 3.57, 6.69, and 6.53 decimal reductions at 60 s, 45 s, and 7 min, respectively. When the pathogens tested were inoculated on cheese slices, 2.67, 3.10, and 1.65 decimal reductions were achieved at the same respective treatment times. The post-treatment storage duration following plasma treatment potently affected further reduction in pathogen populations. Therefore, the newly developed encapsulated DBD-plasma system for use in a container can be applied to improve the safety of sliced cheese, and increasing post-treatment storage time can greatly enhance the system's pathogen-inactivation efficiency.


Asunto(s)
Queso/microbiología , Escherichia coli O157/efectos de la radiación , Irradiación de Alimentos/métodos , Listeria monocytogenes/efectos de la radiación , Viabilidad Microbiana/efectos de la radiación , Salmonella typhimurium/efectos de la radiación , Queso/efectos de la radiación , Escherichia coli O157/crecimiento & desarrollo , Contaminación de Alimentos/análisis , Contaminación de Alimentos/prevención & control , Irradiación de Alimentos/instrumentación , Listeria monocytogenes/crecimiento & desarrollo , Salmonella typhimurium/crecimiento & desarrollo
17.
Foodborne Pathog Dis ; 11(8): 652-7, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24844397

RESUMEN

Atmospheric pressure plasma (APP) is an emerging nonthermal microbial inactivation technique. In this study, agar and raw chicken breast were inoculated with Escherichia coli and treated with an APP jet based on cold arc plasma. The aim of this study was to investigate the optimum conditions for the plasma treatment of an APP jet in order to maximize the efficiency of E. coli inactivation. The combination of N2+O2 (10 standard cubic centimeters per minute) and a longer treatment time (10 min) resulted in the highest inactivation of E. coli on agar plates with an optimum treatment distance of 20 mm. The samples in dry and wet conditions showed similar reductions in E. coli count when one side of the samples was treated at a given treatment time. Treating both sides-2.5 min on each side-resulted in a higher growth inhibition of E. coli than treatment of a single side only for 5 min. However, there was no significant difference between one-side treated samples (10 min) and both-sides treated samples (5+5 min). When the concentration of E. coli in the chicken breast sample was 10(4) colony-forming units (CFU)/g, the reduction rate of the E. coli was the highest, followed by 10(5), 10(6), and 10(7) CFU/g; however, no difference was found between 10(3) and 10(4) CFU/g. In conclusion, various treatment conditions may affect the inactivation efficiency of E. coli. In the present study, the optimum condition was determined as the treatment distance of 20 mm and longer treatment time (10 min) with the addition of oxygen to the nitrogen gas flow. Furthermore, the cell concentration of sample was an important parameter for the efficacy of the inactivation process.


Asunto(s)
Desinfección , Escherichia coli/aislamiento & purificación , Contaminación de Alimentos/prevención & control , Conservación de Alimentos/métodos , Carne/microbiología , Presión , Animales , Pollos , Recuento de Colonia Microbiana , Manipulación de Alimentos , Microbiología de Alimentos , Viabilidad Microbiana
18.
Food Chem ; 160: 241-5, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24799234

RESUMEN

The biological activity of naringin treated with atmospheric pressure plasma was evaluated to investigate whether exposure to plasma can be used as a method to improve the biological activity of natural materials. Naringin was dissolved in methanol (at 500 ppm) and transferred to a container. A dielectric barrier discharge (DBD) (250 W, 15 kHz, ambient air) was then generated. Treatment with the plasma for 20 min increased the radical-scavenging activity, FRAP value, and the total phenolic compound content of naringin from 1.45% to 38.20%, from 27.78 to 207.78 µM/g, and from 172.50 to 225.83 ppm, respectively. Moreover, the tyrosinase-inhibition effect of naringin increased from 6.12% to 83.30% upon plasma treatment. Naringin treated with plasma exhibited antimicrobial activity against foodborne pathogens, especially Salmonella Typhimurium; an activity that was absent before plasma treatment. Structural modifications induced in the naringin molecule by plasma might be responsible for improving the biological activity of naringin.


Asunto(s)
Presión Atmosférica , Flavanonas/química , Fenoles/química , Alimentos Funcionales
19.
Nanoscale ; 5(17): 7825-30, 2013 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-23831925

RESUMEN

A key challenge to the industrial application of nanotechnology is the development of fabrication processes for functional devices based on nanomaterials which can be scaled up for mass production. In this report, we disclose the results of non-thermal radio-frequency (rf) atmospheric pressure plasma (APP) based deposition of TiO2 nanoparticles on a flexible substrate for the fabrication of dye-sensitized solar cells (DSSCs). Operating at 190 °C without a vacuum enclosure, the APP method can avoid thermal damage and vacuum compatibility restrictions and utilize roll-to-roll processing over a large area. The various analyses of the TiO2 films demonstrate that superior film properties can be obtained by the non-thermal APP method when compared with the thermal sintering process operating at 450 °C. The crystallinity of the anatase TiO2 nanoparticles is significantly improved without thermal agglomeration, while the surface defects such as Ti(3+) ions are eliminated, thus providing efficient charge collecting properties for solar cells. Finally, we successfully fabricated a flexible DSSC with an energy conversion efficiency of 4.2% using a transparent plastic substrate. This work demonstrates the potential of non-thermal APP technology in the area of device-level, nano-enabled material manufacturing.


Asunto(s)
Colorantes/química , Energía Solar , Presión Atmosférica , Suministros de Energía Eléctrica , Electrodos , Nanopartículas del Metal/química , Titanio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA