Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Int J Mol Sci ; 24(20)2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37895146

RESUMEN

Platinum-based anticancer agents have revolutionized oncological treatments globally. However, their therapeutic efficacy is often accompanied by systemic toxicity. Carboplatin, recognized for its relatively lower toxicity profile than cisplatin, still presents off-target toxicities, including dose-dependent cardiotoxicity, neurotoxicity, and myelosuppression. In this study, we demonstrate a delivery strategy of carboplatin to mitigate its off-target toxicity by leveraging the potential of zwitterionic nanocarrier, H-dot. The designed carboplatin/H-dot complex (Car/H-dot) exhibits rapid drug release kinetics and notable accumulation in proximity to tumor sites, indicative of amplified tumor targeting precision. Intriguingly, the Car/H-dot shows remarkable efficacy in eliminating tumors across insulinoma animal models. Encouragingly, concerns linked to carboplatin-induced cardiotoxicity are effectively alleviated by adopting the Car/H-dot nanotherapeutic approach. This pioneering investigation not only underscores the viability of H-dot as an organic nanocarrier for platinum drugs but also emphasizes its pivotal role in ameliorating associated toxicities. Thus, this study heralds a promising advancement in refining the therapeutic landscape of platinum-based chemotherapy.


Asunto(s)
Antineoplásicos , Neoplasias , Animales , Carboplatino/uso terapéutico , Cardiotoxicidad/tratamiento farmacológico , Antineoplásicos/efectos adversos , Cisplatino/efectos adversos , Neoplasias/tratamiento farmacológico , Platino (Metal)/farmacología , Platino (Metal)/uso terapéutico
3.
Nanomedicine (Lond) ; 17(22): 1649-1662, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36547231

RESUMEN

Aim: To characterize the pharmacokinetics of deferoxamine-conjugated nanoparticles (DFO-NPs), a novel nanochelator for removing excess iron. Materials & methods: The pharmacokinetics of DFO-NPs were evaluated in Sprague-Dawley rats at three doses (3.3, 10 and 30 µmol/kg) after intravenous and subcutaneous administration. Results: DFO-NPs exhibited a biphasic concentration-time profile after intravenous administration with a short terminal half-life (2.0-3.2 h), dose-dependent clearance (0.111-0.179 l/h/kg), minimal tissue distribution and exclusive renal excretion with a possible saturable reabsorption mechanism. DFO-NPs after subcutaneous administration exhibited absorption-rate-limited kinetics with a prolonged half-life (5.7-10.1 h) and favorable bioavailability (47-107%). Conclusion: DFO-NPs exhibit nonlinear pharmacokinetics with increasing dose, and subcutaneous administration substantially improves drug exposure, thereby making it a clinically viable administration route for iron chelation.


Iron is an essential metal nutrient, but excess iron produces toxic effects that damage multiple organs including the heart, liver and pancreas. Deferoxamine (DFO) is a US FDA-approved drug for treating iron overload, but its use is limited by serious adverse effects and an inconvenient daily dose scheme. The recent development of a DFO-based nanomedicine (DFO-NP) has shown promise in treating iron overload in animals and was safer in animals. Before this new drug can be given to humans, how it is absorbed into the body, processed in the body and removed from the body when given in different amounts and dose routes must be determined. In this study, we tested the absorption, distribution and removal of DFO-NPs after intravenous and subcutaneous injection in rats. This study showed that DFO-NPs behave differently when changing the dose and that subcutaneous injection makes the drug stay in the body longer without ill effect, which means it could be given to patients this way.


Asunto(s)
Deferoxamina , Sobrecarga de Hierro , Ratas , Animales , Deferoxamina/farmacocinética , Deferoxamina/uso terapéutico , Quelantes del Hierro/farmacocinética , Quelantes del Hierro/uso terapéutico , Distribución Tisular , Ratas Sprague-Dawley , Sobrecarga de Hierro/tratamiento farmacológico
4.
Adv Drug Deliv Rev ; 189: 114483, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35944585

RESUMEN

Phototheranostics stem from the recent advances in nanomedicines and bioimaging to diagnose and treat human diseases. Since tumors' diversity, heterogeneity, and instability limit the clinical application of traditional diagnostics and therapeutics, phototheranostics, which combine light-induced therapeutic and diagnostic modalities in a single platform, have been widely investigated. Numerous efforts have been made to develop phototheranostics for efficient light-induced antitumor therapeutics with minimal side effects. Herein, we review the fundamentals of phototheranostic nanomedicines with their biomedical applications. Furthermore, the progress of near-infrared fluorescence imaging and cancer treatments, including photodynamic therapy and photothermal therapy, along with chemotherapy, immunotherapy, and gene therapy, are summarized. This review also discusses the opportunities and challenges associated with the clinical translation of phototheranostics in pan-cancer research. Phototheranostics can pave the way for future research, improve the quality of life, and prolong cancer patients' survival times.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Imagen Óptica , Fotoquimioterapia/métodos , Calidad de Vida , Nanomedicina Teranóstica/métodos
5.
Theranostics ; 12(9): 4147-4162, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35673583

RESUMEN

Enormous efforts have been made to integrate various therapeutic interventions into multifunctional nanoplatforms, resulting in the advance of nanomedicine. Image-guided drug delivery plays a pivotal role in this field by providing specific targeting as well as image navigation for disease prognosis. Methods: We demonstrate image-guided surgery and drug delivery for the treatment of lung cancer using nanotheranostic H-dots loaded with gefitinib and genistein. Results: The surgical margin for lung tumors is determined by image guidance for precise tumor resection, while targeted anti-cancer drugs function simultaneously for synergistic combination therapy. Compared to conventional chemotherapies, H-dot complexes could improve the therapeutic efficacy of drugs while reducing the risk of adverse effects and drug resistance owing to their ideal biodistribution profiles, high targetability, low nonspecific tissue uptake, and fast renal excretion. Conclusions: These H-dot complexes have unlocked a unique framework for integrating multiple therapeutic and diagnostic modalities into one nanoplatform.


Asunto(s)
Antineoplásicos , Neoplasias Pulmonares , Nanopartículas , Antineoplásicos/uso terapéutico , Sistemas de Liberación de Medicamentos/métodos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Nanomedicina Teranóstica/métodos , Distribución Tisular
7.
Adv Sci (Weinh) ; 9(15): e2200872, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35343104

RESUMEN

Deferoxamine (DFO) is an FDA-approved iron-chelating agent which shows good therapeutic efficacy, however, its short blood half-life presents challenges such as the need for repeated injections or continuous infusions. Considering the lifelong need of chelating agents for iron overload patients, a sustained-release formulation that can reduce the number of chelator administrations is essential. Here, injectable hydrogel formulations prepared by integrating crosslinked hyaluronic acid into Pluronic F127 for an extended release of DFO nanochelators are reported. The subcutaneously injected hydrogel shows a thermosensitive sol-gel transition at physiological body temperature and provides a prolonged release of renal clearable nanochelators over 2 weeks, resulting in a half-life 47-fold longer than that of the nanochelator alone. In addition, no chronic toxicity of the nanochelator-loaded hydrogel is confirmed by biochemical and histological analyses. This injectable hydrogel formulation with DFO nanochelators has the potential to be a promising formulation for the treatment of iron overload disorders.


Asunto(s)
Hidrogeles , Sobrecarga de Hierro , Preparaciones de Acción Retardada/uso terapéutico , Humanos , Hierro , Sobrecarga de Hierro/tratamiento farmacológico , Poloxámero/uso terapéutico
8.
Adv Mater ; 34(8): e2106500, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34913533

RESUMEN

The strategy of structure-inherent tumor targeting (SITT) with cyanine-based fluorophores is receiving more attention because no chemical conjugation of targeting moieties is required. However, the targeting mechanism behind SITT has not yet been well explained. Here, it is demonstrated that heptamethine-cyanine-based fluorophores possess not only targetability of tumor microenvironments without the need for additional targeting ligands but also second near-infrared spectral window (NIR-II) imaging capabilities, i.e., minimum scattering and ultralow autofluorescence. The new SITT mechanism suggests that bone-marrow-derived and/or tissue-resident/tumor-associated immune cells can be a principal target for cancer detection due to their abundance in tumoral tissues. Among the tested, SH1 provides ubiquitous tumor targetability and a high tumor-to-background ratio (TBR) ranging from 9.5 to 47 in pancreatic, breast, and lung cancer mouse models upon a single bolus intravenous injection. Furthermore, SH1 can be used to detect small cancerous tissues smaller than 2 mm in diameter in orthotopic lung cancer models. Thus, SH1 could be a promising cancer-targeting agent and have a bright future for intraoperative optical imaging and image-guided cancer surgery.


Asunto(s)
Neoplasias , Cirugía Asistida por Computador , Animales , Colorantes Fluorescentes , Ratones , Neoplasias/diagnóstico por imagen , Imagen Óptica/métodos , Cirugía Asistida por Computador/métodos , Microambiente Tumoral
9.
Small ; 17(40): e2103244, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34480409

RESUMEN

The use of chemoattractants to promote endogenous stem cell-based in situ tissue regeneration has recently garnered much attention. This study is the first to assess the endogenous stem cell migration using a newly discovered substance P (SP) analog (SP1) by molecular dynamics simulations as an efficient chemoattractant. Further, a novel strategy based on electrostatic interaction using cationic chitosan (Ch) and anionic hyaluronic acid (HA) to prepare an SP1-loaded injectable C/H formulation without SP1 loss is developed. The formulation quickly forms an SP1-loaded C/H hydrogel in situ through in vivo injection. The newly discovered SP1 is found to possess human mesenchymal stromal cells (hMSCs) migration-inducing ability that is approximately two to three times higher than that of the existing SP. The designed VEGF-mimicking peptide (VP) chemically reacts with the hydrogel (C/H-VP) to sustain the release of VP, thus inducing vasculogenic differentiation of the hMSCs that migrate toward the C/H-VP hydrogel. Similarly, in animal experiments, SP1 attracts a large number of hMSCs toward the C/H-VP hydrogel, after which VP induces vasculogenic differentiation. Collectively, these findings indicate that SP1-loaded C/H-VP hydrogels are a promising strategy to facilitate endogenous stem cell-based in situ tissue regeneration.


Asunto(s)
Hidrogeles , Células Madre Mesenquimatosas , Animales , Humanos , Ácido Hialurónico , Células Madre , Sustancia P , Factor A de Crecimiento Endotelial Vascular
10.
J Clin Med ; 10(11)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071684

RESUMEN

We investigated the association between the severity of diabetic retinopathy (DR) and hearing loss based on vascular etiology. We used data from the Korean National Health and Nutrition Survey 2010-2012. Adults aged >40 years with diabetes were enrolled. Demographic, socioeconomic, general medical, noise exposure and biochemical data were used. Participants were classified into three groups: diabetes without DR, non-proliferative DR (NPDR), and proliferative DR (PDR); participants were also divided into two groups (middle age (40 ≤ age < 65 years) vs. old age (age ≥ 65 years)). The association between hearing loss and DR was determined using logistic regression analysis. A total of 1045 participants (n = 411, middle-aged group; n = 634, old-age group) were enrolled. Overall, the prevalence of hearing loss was 58.1%, 61.4%, and 85.0% in the no DR, NPDR, and PDR groups, respectively. After adjusting for confounding factors, the logistic regression model showed that there was no significant association between the prevalence of DR and hearing loss in the overall sample. However, the presence of PDR (OR 7.74, 95% CI 2.08-28.82) was significantly associated with hearing loss in the middle-aged group. Middle-aged people with diabetes may have an association between DR severity and hearing loss. The potential role of microvascular diseases in the development of hearing loss, especially in middle-aged patients, could be considered.

11.
J Nanosci Nanotechnol ; 21(8): 4470-4476, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-33714347

RESUMEN

In semiconductor industry, low-dielectric-constant SiCOH films are widely used as inter-metal dielectric (IMD) material to reduce a resistance-capacitance delay, which could degrade performances of semiconductor chips. Plasma enhanced chemical vapor deposition (PECVD) system has been employed to fabricate the low-dielectric-constant SiCOH films. In this work, among various parameters (plasma power, deposition pressure, substrate temperature, precursor injection flow rate, etc.), helium carrier gas flow rate was used to modulate the properties of the low-dielectric-constant SiCOH films. Octamethylcyclotetrasiloxane (OMCTS) precursor and helium were injected into the process chamber of PECVD. And then SiCOH films were deposited varying helium carrier gas flow rate. As helium carrier gas flow rate increased from 1500 to 5000 sccm, refractive indices were increased from 1.389 to 1.428 with enhancement of mechanical strength, i.e., increased hardness and elastic modulus from 1.7 and 9.1 GPa to 3.3 and 19.8 GPa, respectively. However, the relative dielectric constant (k) value was slightly increased from 2.72 to 2.97. Through analysis of Fourier transform infrared (FTIR) spectroscopy, the effects of the helium carrier gas flow rate on chemical structure, were investigated. It was thought that the increase in helium carrier gas flow rate could affect the density with changes of chemical structure and composition. In conclusion, regulation of helium carrier gas flow rate can effectively modulate k values and mechanical strength, which is needed for IMD material in semiconductor fabrication possess.

12.
Mater Sci Eng C Mater Biol Appl ; 117: 111283, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32919644

RESUMEN

To protect unwanted tissue adhesions occurring after surgeries, we aimed to fabricate an anti-adhesive film using cartilage acellular matrix (CAM) with anti-vascular inhibition activity. Additionally, to fabricate anti-adhesive films with tunable swelling, mechanical, and biodegradation properties, a biodegradable polyester (PEP) with N-hydroxysuccinimide (NHS) in the chain end position was synthesized as a cross-linker. CAM/PEP (CP) films were prepared with various CAM: PEP ratios in the wide size with repeatable reproducibility, and then, cross-linked CP (Cx-CP) were obtained by the interpenetrating cross-linking reaction between the amine group on CAM and the NHS group on PEP cross-linkers under thermal treatment. The biodegradation, wettability, swelling, and mechanical properties of the prepared anti-adhesive Cx-CP films were controlled by varying the CAM:PEP ratio. The degradation half-life, contact angle, elastic moduli and toughness of Cx-CP films increased according to the increasing PEP content. Additionally, Cx-CP films significantly inhibits the attachment and proliferation of HUVECs. Cx-CP film prepared by varying the CAM:PEP ratio can be tailored to meet individual requirements for in vivo injured tissues. In animal experiments, anti-adhesive Cx-CP films implanted between the peritoneal wall and the cecum significantly suppressed tissue adhesion between them. Additionally, good adhesion effect observed at anti-adhesive film maintained for proper time period at injured tissues. Taken together, in this work, we successfully achieved strategy for the development of anti-adhesive barrier with tunable swelling, mechanical, and biodegradation properties.


Asunto(s)
Adhesivos , Cartílago , Animales , Caproatos , Dioxanos , Estudios de Factibilidad , Lactonas , Reproducibilidad de los Resultados
13.
Acta Biomater ; 117: 108-120, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32927087

RESUMEN

An injectable, click-crosslinking (Cx) hyaluronic acid (HA) hydrogel scaffold modified with a bone morphogenetic protein-2 (BMP-2) mimetic peptide (BP) was prepared for bone tissue engineering applications. The injectable click-crosslinking HA formulation was prepared from HA-tetrazine (HA-Tet) and HA-cyclooctene (HA-TCO). The Cx-HA hydrogel scaffold was prepared simply by mixing HA-Tet and HA-TCO. The Cx-HA hydrogel scaffold was stable for a longer period than HA both in vitro and in vivo, which was verified via in-vivo fluorescence imaging in real time. BP acted as an osteogenic differentiation factor for human dental pulp stem cells (hDPSCs). After its formation in vivo, the Cx-HA scaffold provided a fine environment for the hDPSCs, and the biocompatibility of the hydrogel scaffold with tissue was good. Like traditional BMP-2, BP induced the osteogenic differentiation of hDPSCs in vitro. The physical properties and injectability of the chemically loaded BP for the Cx-HA hydrogel (Cx-HA-BP) were nearly identical to those of the physically loaded BP hydrogels and the Cx-HA-BP formulation quickly formed a hydrogel scaffold in vivo. The chemically loaded hydrogel scaffold retained the BP for over a month. The Cx-HA-BP hydrogel was better at inducing the osteogenic differentiation of loaded hDPSCs, because it prolonged the availability of BP. In summary, we successfully developed an injectable, click-crosslinking Cx-HA hydrogel scaffold to prolong the availability of BP for efficient bone tissue engineering.


Asunto(s)
Hidrogeles , Ingeniería de Tejidos , Humanos , Ácido Hialurónico , Hidrogeles/farmacología , Osteogénesis , Andamios del Tejido
14.
J Nanosci Nanotechnol ; 20(11): 7100-7104, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32604565

RESUMEN

Four organic solar cell (OSC) devices with the bilayer heterojunction architecture were investigated, where carbon nanotubes (CNTs) were doped within the acceptor layer. The power conversion efficiency (PCE) of the CNT-incorporated device with a concentration of 0.004 wt% is approximately 20% point higher than that of the reference one. As the concentration of CNTs became higher, the PCE of the devices deteriorated; this could be caused by the percolative connection of CNTs within the layer. The voltage dependence on the effective lifetime of the charge carriers, determined by Cole-Cole curves of the impedance analysis, was different for the reference and CNT-incorporating devices-the lifetime of the CNT-incorporated ones was shorter, possibly owing to the high local electric field near the CNTs. Controlling the concentration of CNTs below the critical concentration of percolation is a key factor in achieving high photovoltaic performance.

15.
Adv Exp Med Biol ; 1250: 35-48, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32601936

RESUMEN

Injectable in situ-forming hydrogels have been used clinically in diverse biomedical applications. These hydrogels have distinct advantages such as easy management and minimal invasiveness. The hydrogels are aqueous formulations, and a simple injection at the target site replaces a traditional surgical procedure. Here, we review injectable in situ-forming hydrogels that are formulated by physical and chemical methods to deliver proteins and peptides. Prospects for using in situ-forming hydrogels for several specific applications are also discussed.


Asunto(s)
Hidrogeles , Péptidos , Proteínas , Sistemas de Liberación de Medicamentos , Humanos , Hidrogeles/administración & dosificación , Hidrogeles/química , Inyecciones , Péptidos/administración & dosificación , Proteínas/administración & dosificación
16.
Audiol Neurootol ; 25(6): 291-296, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32403103

RESUMEN

INTRODUCTION: The aim of this study was to assess the biocompatibility of several intra-tympanic (IT) drug delivery vehicles and to compare hearing outcomes. MATERIALS AND METHODS: After acute acoustic trauma, rats were treated with IT 10 mg/mL dexamethasone phosphate (D) and divided into the following groups for drug delivery: saline + D (n = 15), hyaluronic acid (HA) + D (n = 17), and methoxy polyethylene glycol-b-polycaprolactone block copolymer (MP) + D (n = 24). RESULTS: No inflammation was found in the saline + D or HA + D groups. The duration of vehicle/drug persistence in the bulla was significantly longer for the MP + D (47.5 days) and HA + D groups (1.8 days) than for the saline + D group (<1 day). The tympanic membrane was significantly thicker in the MP + D group than in the saline + D and HA + D groups. The proportion of ears with good hearing outcome was significantly higher (63.6%) in the HA + D group than in the MP + D group. The number of hair cells in the hearing loss (HL) control group was significantly lower than in the MP + D group. DISCUSSION/CONCLUSION: HA shows great potential as a biocompatible vehicle for D delivery via the IT route, without an inflammatory reaction and with better hearing outcomes. Considering inflammation and hearing, MP may not be a good candidate for IT drug delivery.


Asunto(s)
Dexametasona/administración & dosificación , Potenciales Evocados Auditivos del Tronco Encefálico/efectos de los fármacos , Glucocorticoides/administración & dosificación , Pérdida Auditiva Provocada por Ruido/tratamiento farmacológico , Audición/efectos de los fármacos , Membrana Timpánica/efectos de los fármacos , Animales , Dexametasona/uso terapéutico , Glucocorticoides/uso terapéutico , Inyección Intratimpánica , Masculino , Ratas , Ratas Sprague-Dawley , Resultado del Tratamiento
17.
J Clin Med ; 9(3)2020 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-32213852

RESUMEN

In this cross-sectional study, we examined age-related changes in the retinal vessels of 100 healthy participants, aged from 5 to 80 years, and divided into four groups (G1, under 20 years of age; G2, from 20 to 39 years of age; G3, from 40 to 59 years of age; G4, age 60 years or older). All subjects underwent swept-source optical coherence tomography (SS-OCT) and OCT angiography (OCTA). The vascular density (VD) of the superficial (SCP) and deep capillary plexus (DCP), and choriocapillaris (CCP) were measured using OCTA. The vascular density of each capillary layer, foveal avascular zone (FAZ) area, ganglion cell-inner plexiform layer (GC-IPL) thickness, retinal thickness (RT), and choroidal thickness (CT) were compared between age groups. Most OCT variables were correlated with OCTA variables. The FAZ area; VD of the SCP, DCP, and CCP; GC-IPL thickness; RT; and CT showed significant difference (p < 0.001) between G1 + G2 and G3 + G4, except for central GC-IPL thickness (p = 0.14) and central RT (p = 0.25). Density of the retinal capillary vasculature reduced and FAZ area increased after age 40, which represents the onset of middle age.

18.
J Mater Chem B ; 7(47): 7599-7611, 2019 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-31740904

RESUMEN

In this work, we prepared an electrospun small intestinal submucosa/poly(ε-caprolactone)-ran-poly(l-lactide) (SIS/PCLA) sheet onto which substance P (SP) was loaded, and this was employed as a cell-free scaffold for wound healing through the mobilization of human mesenchymal stem cells (hMSCs). SP release from the SP-loaded scaffold was 42% at 12 h and 51% at 24 h due to an initial burst of SP, but after 1 day, it exhibited a linear release profile and was released at a sustained rate for 21 days. The SP-loaded SIS/PCLA sheet exhibited higher in vitro and in vivo hMSC migration than did the PCLA and SIS/PCLA sheets. Large hMSCs injected into the tail vein of mice models migrated towards the wound to a greater extent in the presence of the SP-loaded SIS/PCLA sheet than with the PCLA and SIS/PCLA sheets, as confirmed by the CD44 and CD29 markers of recruited hMSCs. In animal wound models, significantly higher wound contraction (∼97%) in the group treated with the SP-loaded SIS/PCLA sheet was observed compared with the PCLA (∼74%) and SIS/PCLA (∼84%) groups at 3 weeks. In addition, SP-loaded SIS/PCLA-treated animals showed significant epidermal regeneration and collagen density (56%) in the mature granulation tissue at 3 weeks compared to the PCLA and SIS/PCLA groups. The wound area after SP-loaded SIS/PCLA sheet treatment also showed high blood vessel formation at the early stage, resulting in enhanced wound healing. Furthermore, the SP-loaded SIS/PCLA group exhibited a lower macrophage count (2.9%) than did the PCLA (7.7%) and SIS/PCLA (3.4%) groups. It was thus confirmed that the use of SP-loaded SIS/PCLA sheet as a cell-free scaffold could effectively enhance wound healing through MSC recruitment.


Asunto(s)
Mucosa Intestinal/química , Poliésteres/química , Sustancia P/química , Animales , Movimiento Celular/efectos de los fármacos , Femenino , Receptores de Hialuranos/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Desnudos , Piel/patología , Espectroscopía Infrarroja Corta , Sustancia P/metabolismo , Sustancia P/farmacología , Cicatrización de Heridas/efectos de los fármacos
19.
Pharmaceutics ; 11(9)2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31480552

RESUMEN

Our purpose was to test whether a preparation of injectable formulations of dexamethasone (Dex)-loaded microspheres (Dex-Ms) mixed with click-crosslinked hyaluronic acid (Cx-HA) (or Pluronic (PH) for comparison) prolongs therapeutic levels of released Dex. Dex-Ms were prepared using a monoaxial-nozzle ultrasonic atomizer with an 85% yield of the Dex-Ms preparation, encapsulation efficiency of 80%, and average particle size of 57 µm. Cx-HA was prepared via a click reaction between transcyclooctene (TCO)-modified HA (TCO-HA) and tetrazine (TET)-modified HA (TET-HA). The injectable formulations (Dex-Ms/PH and Dex-Ms/Cx-HA) were fabricated as suspensions and became a Dex-Ms-loaded hydrogel drug depot after injection into the subcutaneous tissue of Sprague Dawley rats. Dex-Ms alone also formed a drug depot after injection. The Cx-HA hydrogel persisted in vivo for 28 days, but the PH hydrogel disappeared within six days, as evidenced by in vivo near-infrared fluorescence imaging. The in vitro and in vivo cumulative release of Dex by Dex-Ms/Cx-HA was much slower in the early days, followed by sustained release for 28 days, compared with Dex-Ms alone and Dex-Ms/PH. The reason was that the Cx-HA hydrogel acted as an external gel matrix for Dex-Ms, resulting in the retarded release of Dex from Dex-Ms. Therefore, we achieved significantly extended duration of a Dex release from an in vivo Dex-Ms-loaded hydrogel drug depot formed by Dex-Ms wrapped in an injectable click-crosslinked HA hydrogel in a minimally invasive manner. In conclusion, the Dex-Ms/Cx-HA drug depot described in this work showed excellent performance on extended in vivo delivery of Dex.

20.
Mater Sci Eng C Mater Biol Appl ; 103: 109853, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31349513

RESUMEN

We have designed and characterized an injectable, electrostatically bonded, in situ-forming hydrogel system consisting of a cationic polyelectrolyte [(methoxy)polyethylene glycol-b-(poly(ε-caprolactone)-ran-poly(L-lactic acid)] (MP) copolymer derivatized with an amine group (MP-NH2) and anionic BMP2. To the best of our knowledge, there have been hardly any studies that have investigated electrostatically bonded, in situ-forming hydrogel systems consisting of MP-NH2 and BMP2, with respect to how they promote in vivo osteogenic differentiation of human turbinate mesenchymal stem cells (hTMSCs). Injectable formulations almost immediately formed an electrostatically loaded hydrogel depot containing BMP2, upon injection into mice. The hydrogel features and stability of BMP2 inside the hydrogel were significantly affected by the electrostatic attraction between BMP2 and MP-NH2. Additionally, the time BMP2 spent inside the hydrogel depot was prolonged in vivo, as evidenced by in vivo near-infrared fluorescence imaging. Biocompatibility was demonstrated by the fact that hTMSCs survived in vivo, even after 8 weeks and even though relatively few macrophages were in the hydrogel depot. The osteogenic capacity of the electrostatically loaded hydrogel implants containing BMP2 was higher than that of a hydrogel that was simply loaded with BMP2, as evidenced by Alizarin Red S, von Kossa, and hematoxylin and eosin staining as well as osteonectin, osteopontin, osteocalcin, and type 1α collagen mRNA expression. The results confirmed that our injectable, in situ-forming hydrogel system, electrostatically loaded with BMP2, can enhance in vivo osteogenic differentiation of hTMSCs.


Asunto(s)
Proteína Morfogenética Ósea 2/metabolismo , Hidrogeles , Células Madre Mesenquimatosas/metabolismo , Osteogénesis/efectos de los fármacos , Cornetes Nasales/metabolismo , Adulto , Animales , Femenino , Xenoinjertos , Humanos , Hidrogeles/química , Hidrogeles/farmacología , Células Madre Mesenquimatosas/citología , Ratones , Electricidad Estática , Trasplante de Células Madre , Cornetes Nasales/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...