Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
J Clin Med ; 13(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38792431

RESUMEN

Lumbar fusion surgery for treating degenerative spinal diseases has undergone significant advancements in recent years. In addition to posterior instrumentation, anterior interbody fusion techniques have been developed along with various cages for interbody fusion. Recently, expandable cages capable of altering height, lordotic angle, and footprint within the disc space have garnered significant attention. In this manuscript, we review the current status, clinical outcomes, and future prospects of expandable cages for lumbar interbody fusion based on the existing literature. Expandable cages are suitable for minimally invasive spinal surgeries. Small-sized cages can be inserted and subsequently expanded to a larger size within the disc space. While expandable cages generally demonstrate superior clinical outcomes compared to static cages, some studies have suggested comparable or even poorer outcomes with expandable cages than static cages. Careful interpretation through additional long-term follow-ups is required to assess the utility of expandable cages. If these shortcomings are addressed and the advantages are further developed, expandable cages could become suitable surgical instruments for minimally invasive spinal surgeries.

2.
J Microbiol Biotechnol ; 34(6): 1-8, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38755001

RESUMEN

Antibiotics are used to control infectious diseases. However, adverse effects of antibiotics, such as devastation of the gut microbiota and enhancement of the inflammatory response, have been reported. Health benefits of fermented milk are established and can be enhanced by the addition of probiotic strains. In this study, we evaluated effects of fermented milk containing Lacticaseibacillus rhamnosus (L. rhamnosus) SNUG50430 in a mouse model with antibiotic treatment. Fermented milk containing 2 × 105 colony-forming units of L. rhamnosus SNUG50430 was administered to six week-old female BALB/c mice for 1 week. Interleukin (IL)-10 levels in colon samples were significantly increased (P < 0.05) compared to water-treated mice, whereas interferon-gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α) were decreased, of mice treated with fermented milk containing L. rhamnosus SNUG50430- antibiotics-treated (FM+LR+Abx-treated) mice. Phylum Firmicutes composition in the gut was restored and the relative abundances of several bacteria, including the genera Coprococcus and Lactobacillus, were increased in FM+LR+Abx-treated mice compared to PBS+Abx-treated mice. Interestingly, abundances of genus Coprococcus and Lactobacillus were positively correlated with IL5 and IL-10 levels (P < 0.05) in colon samples and negative correlated with IFN-γ and TNF-α levels in serum samples (P < 0.001). Acetate and butyrate were increased in mice with fermented milk and fecal microbiota of FM+LR+Abx-treated mice were highly enriched with butyrate metabolism pathway compared to water-treated mice (P < 0.05). Thus, fermented milk containing L. rhamnosus SNUG50430 was shown to ameliorate adverse health effects caused by antibiotics through modulating immune responses and the gut microbiota.

3.
Small Methods ; : e2301735, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38529746

RESUMEN

GaAs thin-film solar cells have high efficiency, reliability, and operational stability, making them a promising solution for self-powered skin-conformal biosensors. However, inherent device thickness limits suitability for such applications, making them uncomfortable and unreliable in flexural environments. Therefore, reducing the flexural rigidity becomes crucial for integration with skin-compatible electronic devices. Herein, this study demonstrated a novel one-step surface modification bonding methodology, allowing a streamlined transfer process of ultra-thin (2.3 µm thick) GaAs solar cells on flexible polymer substrates. This reproducible technique enables strong bonding between dissimilar materials (GaAs-polydimethylsiloxane, PDMS) without high external pressures and temperatures. The fabricated solar cell showed exceptional performance with an open-circuit voltage of 1.018 V, short-circuit current density of 20.641 mA cm-2, fill factor of 79.83%, and power conversion efficiency of 16.77%. To prove the concept, the solar cell is integrated with a skin-compatible organic electrochemical transistor (OECT). Competitive electrical outputs of GaAs solar cells enabled high current levels of OECT under subtle light intensities lower than 50 mW cm-2, which demonstrates a self-powered electrocardiogram sensor with low noise (signal-to-noise ratio of 32.68 dB). Overall, this study presents a promising solution for the development of free-form and comfortable device structures that can continuously power wearable devices and biosensors.

4.
J Microbiol ; 62(2): 91-99, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38386273

RESUMEN

Atopic dermatitis (AD) is a chronic inflammatory skin disease with repeated exacerbations of eczema and pruritus. Probiotics can prevent or treat AD appropriately via modulation of immune responses and gut microbiota. In this study, we evaluated effects of Lactobacillus acidophilus (L. acidophilus) KBL409 using a house dust mite (Dermatophagoides farinae)-induced in vivo AD model. Oral administration of L. acidophilus KBL409 significantly reduced dermatitis scores and decreased infiltration of immune cells in skin tissues. L. acidophilus KBL409 reduced in serum immunoglobulin E and mRNA levels of T helper (Th)1 (Interferon-γ), Th2 (Interleukin [IL]-4, IL-5, IL-13, and IL-31), and Th17 (IL-17A) cytokines in skin tissues. The anti-inflammatory cytokine IL-10 was increased and Foxp3 expression was up-regulated in AD-induced mice with L. acidophilus KBL409. Furthermore, L. acidophilus KBL409 significantly modulated gut microbiota and concentrations of short-chain fatty acids and amino acids, which could explain its effects on AD. Our results suggest that L. acidophilus KBL409 is the potential probiotic for AD treatment by modulating of immune responses and gut microbiota of host.


Asunto(s)
Dermatitis Atópica , Probióticos , Animales , Ratones , Dermatitis Atópica/terapia , Dermatitis Atópica/metabolismo , Lactobacillus acidophilus/metabolismo , Citocinas/metabolismo , Piel , Probióticos/uso terapéutico
5.
iScience ; 27(3): 109061, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38361625

RESUMEN

The 2019 coronavirus pandemic resulted in a massive global healthcare crisis, highlighting the necessity to develop effective and reproducible platforms capable of rapidly and accurately detecting SARS-CoV-2. In this study, we developed an electrolyte-gated indium-gallium-zinc-oxide (IGZO) thin-film transistor with sequential surface modification to realize the low limit of detection (LoD <50 fM) and a wide detection range from 50 fM to 5 µM with good linearity (R2 = 0.9965), and recyclability. The surface chemical modification was achieved to anchor the single strand of SARS-CoV-2 DNA via selective hybridization. Moreover, the minute electrical signal change following the chemical modification was investigated by in-depth physicochemical analytical techniques. Finally, we demonstrate fully recyclable biosensors based on oxygen plasma treatment. Owing to its cost-effective fabrication, rapid detection at the single-molecule level, and low detection limit, the proposed biosensor can be used as a point-of-care platform to perform timely and effective SARS-CoV-2 detection.

6.
Nat Commun ; 14(1): 8066, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38052834

RESUMEN

Understanding the degradation mechanism of organic light-emitting diodes (OLED) is essential to improve device performance and stability. OLED failure, if not process-related, arises mostly from chemical instability. However, the challenges of sampling from nanoscale organic layers and interfaces with enough analytical information has hampered identification of degradation products and mechanisms. Here, we present a high-resolution diagnostic method of OLED degradation using an Orbitrap mass spectrometer equipped with a gas cluster ion beam to gently desorb nanometre levels of materials, providing unambiguous molecular information with 7-nm depth resolution. We chemically depth profile and analyse blue phosphorescent and thermally-activated delayed fluorescent (TADF) OLED devices at different degradation levels. For OLED devices with short operational lifetimes, dominant chemical degradation mainly relate to oxygen loss of molecules that occur at the interface between emission and electron transport layers (EML/ETL) where exciton distribution is maximised, confirmed by emission zone measurements. We also show approximately one order of magnitude increase in lifetime of devices with slightly modified host materials, which present minimal EML/ETL interfacial degradation and show the method can provide insight for future material and device architecture development.

7.
Nat Commun ; 14(1): 7577, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38016963

RESUMEN

Despite the growing interest in dynamic behaviors at the frequency domain, there exist very few studies on molecular orientation-dependent transient responses of organic mixed ionic-electronic conductors. In this research, we investigated the effect of ion injection directionality on transient electrochemical transistor behaviors by developing a model mixed conductor system. Two polymers with similar electrical, ionic, and electrochemical characteristics but distinct backbone planarities and molecular orientations were successfully synthesized by varying the co-monomer unit (2,2'-bithiophene or phenylene) in conjunction with a novel 1,4-dithienylphenylene-based monomer. The comprehensive electrochemical analysis suggests that the molecular orientation affects the length of the ion-drift pathway, which is directly correlated with ion mobility, resulting in peculiar OECT transient responses. These results provide the general insight into molecular orientation-dependent ion movement characteristics as well as high-performance device design principles with fine-tuned transient responses.

8.
ACS Nano ; 17(19): 18792-18804, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37781927

RESUMEN

Recently, the development of non-fullerene acceptors (NFAs) for near-infrared (NIR) organic photodetectors (OPDs) has attracted great interest due to their excellent NIR light absorption properties. Herein, we developed NFAs by substituting an electron-donating moiety (branched alkoxy thiophene (BAT)) asymmetrically (YOR1) and symmetrically (YOR2) for the Y6 framework. YOR1 exhibited nanoscale phase separation in a film blended with PTB7-Th. Moreover, substituting the BAT unit effectively extended the absorption wavelengths of YOR1 over 1000 nm by efficient intramolecular charge transfer and extension of the conjugation length. Consequently, YOR1-OPD exhibited significantly reduced dark current and improved responsivity by simultaneously satisfying optimal nanomorphology and significant suppression of charge recombination, resulting in 1.98 × 1013 and 3.38 × 1012 Jones specific detectivity at 950 and 1000 nm, respectively. Moreover, we successfully demonstrated the application of YOR1-OPD in highly sensitive photoplethysmography sensors using NIR light. This study suggests a strategic approach for boosting the overall performance of NIR OPDs targeting a 1000 nm light signal using an all-in-one (optimal morphology, suppressed dark current, and extended NIR absorption wavelength) NFA.

9.
Acta Biomater ; 172: 159-174, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37832839

RESUMEN

A versatile hydrogel was developed for enhancing bioactive wound healing by introducing the amphiphilic GHK peptide (GHK-C16) into a photo-crosslinkable tyramine-modified hyaluronic acid (HA-Ty). GHK-C16 self-assembled into GHK nanofibers (GHK NF) in HA-Ty solution, which underwent in situ gelation after the wound area was filled with precursor solution. Blue light irradiation (460-490 nm), with riboflavin phosphate as a photoinitiator, was used to trigger crosslinking, which enhanced the stability of the highly degradable hyaluronic acid and enabled sustained release of the nanostructured GHK derivatives. The hydrogels provided a microenvironment that promoted the proliferation of dermal fibroblasts and the activation of cytokines, leading to reduced inflammation and increased collagen expression during wound healing. The complexation of Cu2+ into GHK nanofibers resulted in superior wound healing capabilities compared with non-lipidated GHK peptide with a comparable level of growth factor (EGF). Additionally, nanostructured Cu-GHK improved angiogenesis through vascular endothelial growth factor (VEGF) activation, which exerted a synergistic therapeutic effect. Furthermore, in vivo wound healing experiments revealed that the Cu-GHK NF/HA-Ty hydrogel accelerated wound healing through densely packed remodeled collagen in the dermis and promoting the growth of denser fibroblasts. HA-Ty hydrogels incorporating GHK NF also possessed improved mechanical properties and a faster wound healing rate, making them suitable for advanced bioactive wound healing applications. STATEMENT OF SIGNIFICANCE: By combining photo-crosslinkable tyramine-modified hyaluronic acid with self-assembled Cu-GHK-C16 peptide nanofibers (Cu-GHK NF), the Cu-GHK NF/HA-Ty hydrogel offers remarkable advantages over conventional non-structured Cu-GHK for wound healing. It enhances cell proliferation, migration, and collagen remodeling-critical factors in tissue regeneration. The incorporation of GHK nanofibers complexed with copper ions imparts potent anti-inflammatory effects, promoting cytokine activation and angiogenesis during wound healing. The Cu-GHK NF/hydrogel's unique properties, including in situ photo-crosslinking, ensure high customization and potency in tissue regeneration, providing a cost-effective alternative to growth factors. In vivo experiments further validate its efficacy, demonstrating significant wound closure, collagen remodeling, and increased fibroblast density. Overall, the Cu-GHK NF/HA-Ty hydrogel represents an advanced therapeutic option for wound healing applications.


Asunto(s)
Ácido Hialurónico , Nanofibras , Ácido Hialurónico/farmacología , Ácido Hialurónico/química , Factor A de Crecimiento Endotelial Vascular/metabolismo , Hidrogeles/farmacología , Hidrogeles/química , Cobre/química , Cicatrización de Heridas/fisiología , Colágeno/farmacología , Colágeno/química , Péptidos/farmacología , Tiramina
10.
J Pers Med ; 13(7)2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37511758

RESUMEN

We report our experience of preoperative plate contouring for periarticular fractures using three-dimensional printing (3DP) technology and describe its benefits. We enrolled 34 patients, including 11 with humerus midshaft fractures, 12 with tibia plateau fractures, 2 with pilon fractures, and 9 with acetabulum fractures. The entire process of plate contouring over the 3DP model was videotaped and retrospectively analyzed. The total time and number of trials for the intraoperative positioning of precontoured plates and any further intraoperative contouring events were prospectively recorded. The mismatch between the planned and postoperative plate positions was evaluated. The average plate contouring time was 9.2 min for humerus shaft, 13.8 min for tibia plateau fractures, 8.8 min for pilon fractures, and 11.6 min for acetabular fractures. Most precontoured plates (88%, 30/34) could sit on the planned position without mismatch. In addition, only one patient with humerus shaft fracture required additional intraoperative contouring. Preoperative patient specific periarticular plate contouring using a 3DP model is a simple and efficient method that may alleviate the surgical challenges involved in plate contouring and positioning.

11.
J Microbiol ; 61(7): 673-682, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37314676

RESUMEN

Ulcerative colitis, a major form of inflammatory bowel disease (IBD) associated with chronic colonic inflammation, may be induced via overreactive innate and adaptive immune responses. Restoration of gut microbiota abundance and diversity is important to control the pathogenesis. Lactobacillus spp., well-known probiotics, ameliorate IBD symptoms via various mechanisms, including modulation of cytokine production, restoration of gut tight junction activity and normal mucosal thickness, and alterations in the gut microbiota. Here, we studied the effects of oral administration of Lactobacillus rhamnosus (L. rhamnosus) KBL2290 from the feces of a healthy Korean individual to mice with DSS-induced colitis. Compared to the dextran sulfate sodium (DSS) + phosphate-buffered saline control group, the DSS + L. rhamnosus KBL2290 group evidenced significant improvements in colitis symptoms, including restoration of body weight and colon length, and decreases in the disease activity and histological scores, particularly reduced levels of pro-inflammatory cytokines and an elevated level of anti-inflammatory interleukin-10. Lactobacillus rhamnosus KBL2290 modulated the levels of mRNAs encoding chemokines and markers of inflammation; increased regulatory T cell numbers; and restored tight junction activity in the mouse colon. The relative abundances of genera Akkermansia, Lactococcus, Bilophila, and Prevotella increased significantly, as did the levels of butyrate and propionate (the major short-chain fatty acids). Therefore, oral L. rhamnosus KBL2290 may be a useful novel probiotic.


Asunto(s)
Colitis , Lacticaseibacillus rhamnosus , Probióticos , Animales , Ratones , Colitis/inducido químicamente , Colitis/inmunología , Colitis/microbiología , Colitis/terapia , Colon/inmunología , Colon/microbiología , Citocinas/metabolismo , Sulfato de Dextran , Modelos Animales de Enfermedad , Inflamación/terapia , Ratones Endogámicos C57BL , Probióticos/administración & dosificación , Probióticos/uso terapéutico , Biomarcadores/análisis , Microbioma Gastrointestinal , Biodiversidad , Ácidos Grasos Volátiles/metabolismo , Administración Oral , Lactobacillaceae/clasificación , Lactobacillaceae/fisiología
12.
Gels ; 9(5)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37232976

RESUMEN

The low ionic conductivity and unstable interface of electrolytes/electrodes are the key issues hindering the application progress of lithium-ion batteries (LiBs). In this work, a cross-linked gel polymer electrolyte (C-GPE) based on epoxidized soybean oil (ESO) was synthesized by in situ thermal polymerization using lithium bis(fluorosulfonyl)imide (LiFSI) as an initiator. Ethylene carbonate/diethylene carbonate (EC/DEC) was beneficial for the distribution of the as-prepared C-GPE on the anode surface and the dissociation ability of LiFSI. The resulting C-GPE-2 exhibited a wide electrochemical window (of up to 5.19 V vs. Li+/Li), an ionic conductivity (σ) of 0.23 × 10-3 S/cm at 30 °C, a super-low glass transition temperature (Tg), and good interfacial stability between the electrodes and electrolyte. The battery performance of the as-prepared C-GPE-2 based on a graphite/LiFePO4 cell showed a high specific capacity of ca. 161.3 mAh/g (an initial Coulombic efficiency (CE) of ca. 98.4%) with a capacity retention rate of ca. 98.5% after 50 cycles at 0.1 C and an average CE of about ca. 98.04% at an operating voltage range of 2.0~4.2 V. This work provides a reference for designing cross-linking gel polymer electrolytes with high ionic conductivity, facilitating the practical application of high-performance LiBs.

13.
APL Bioeng ; 7(2): 026102, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37056513

RESUMEN

Biocompatible field-effect-transistor-based biosensors have drawn attention for the development of next-generation human-friendly electronics. High-performance electronic devices must achieve low-voltage operation, long-term operational stability, and biocompatibility. Herein, we propose an electrolyte-gated thin-film transistor made of large-area solution-processed indium-gallium-zinc oxide (IGZO) semiconductors capable of directly interacting with live cells at physiological conditions. The fabricated transistors exhibit good electrical performance operating under sub-0.5 V conditions with high on-/off-current ratios (>107) and transconductance (>1.0 mS) over an extended operational lifetime. Furthermore, we verified the biocompatibility of the IGZO surface to various types of mammalian cells in terms of cell viability, proliferation, morphology, and drug responsiveness. Finally, the prolonged stable operation of electrolyte-gated transistor devices directly integrated with live cells provides the proof-of-concept for solution-processed metal oxide material-based direct cellular interfaces.

14.
Sensors (Basel) ; 23(5)2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36905074

RESUMEN

In the medical field, it is delicate to anticipate good performance in using deep learning due to the lack of large-scale training data and class imbalance. In particular, ultrasound, which is a key breast cancer diagnosis method, is delicate to diagnose accurately as the quality and interpretation of images can vary depending on the operator's experience and proficiency. Therefore, computer-aided diagnosis technology can facilitate diagnosis by visualizing abnormal information such as tumors and masses in ultrasound images. In this study, we implemented deep learning-based anomaly detection methods for breast ultrasound images and validated their effectiveness in detecting abnormal regions. Herein, we specifically compared the sliced-Wasserstein autoencoder with two representative unsupervised learning models autoencoder and variational autoencoder. The anomalous region detection performance is estimated with the normal region labels. Our experimental results showed that the sliced-Wasserstein autoencoder model outperformed the anomaly detection performance of others. However, anomaly detection using the reconstruction-based approach may not be effective because of the occurrence of numerous false-positive values. In the following studies, reducing these false positives becomes an important challenge.


Asunto(s)
Aprendizaje Profundo , Ultrasonografía Mamaria , Femenino , Humanos , Ultrasonografía Mamaria/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Ultrasonografía , Diagnóstico por Computador/métodos
15.
J Phys Chem Lett ; 14(13): 3103-3110, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-36951437

RESUMEN

Time-resolved X-ray liquidography (TRXL) has emerged as a powerful technique for studying the structural dynamics of small molecules and macromolecules in liquid solutions. However, TRXL has limited sensitivity for small molecules containing light atoms only, whose signal has lower contrast compared with the signal from solvent molecules. Here, we present an alternative approach to bypass this limitation by detecting the change in solvent temperature resulting from a photoinduced reaction. Specifically, we analyzed the heat dynamics of TRXL data obtained from p-hydroxyphenacyl diethyl phosphate (HPDP). This analysis enabled us to experimentally determine the number of intermediates and their respective enthalpy changes, which can be compared to theoretical enthalpies to identify the intermediates. This work demonstrates that TRXL can be used to uncover the kinetics and reaction pathways for small molecules without heavy atoms even if the scattering signal from the solute molecules is buried under the strong solvent scattering signal.

16.
Sci Rep ; 13(1): 571, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36631519

RESUMEN

Recently, biocompatible optical sources have been surfacing for new-rising biomedical applications, allowing them to be used for multi-purpose technologies such as biological sensing, optogenetic modulation, and phototherapy. Especially, vertical-cavity surface-emitting laser (VCSEL) is in the spotlight as a prospective candidate for optical sources owing to its low-driving current performance, low-cost, and package easiness in accordance with two-dimensional (2D) arrays structure. In this study, we successfully demonstrated the actualization of biocompatible thin-film 930 nm VCSELs transferred onto a Polydimethylsiloxane (PDMS) carrier. The PDMS feature with biocompatibility as well as biostability makes the thin-film VCSELs well-suited for biomedical applications. In order to integrate the conventional VCSEL onto the PDMS carrier, we utilized a double-transfer technique that transferred the thin-film VCSELs onto foreign substrates twice, enabling it to maintain the p-on-n polarity of the conventional VCSEL. Additionally, we employed a surface modification-assisted bonding (SMB) using an oxygen plasma in conjunction with silane treatment when bonding the PDMS carrier with the substrate-removed conventional VCSELs. The threshold current and maximum output power of the fabricated 930 nm thin-film VCSELs are 1.08 mA and 7.52 mW at an injection current of 13.9 mA, respectively.


Asunto(s)
Dimetilpolisiloxanos , Rayos Láser , Fototerapia
17.
Biosensors (Basel) ; 12(11)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36421138

RESUMEN

Human urine samples are non-invasive, readily available, and contain several components that can provide useful indicators of the health status of patients. Hence, urine is a desirable and important template to aid in the diagnosis of common clinical conditions. Conventional methods such as dipstick tests, urine culture, and urine microscopy are commonly used for urinalysis. Among them, the dipstick test is undoubtedly the most popular owing to its ease of use, low cost, and quick response. Despite these advantages, the dipstick test has limitations in terms of sensitivity, selectivity, reusability, and quantitative evaluation of diseases. Various biosensor technologies give it the potential for being developed into point-of-care (POC) applications by overcoming these limitations of the dipstick test. Here, we present a review of the biosensor technologies available to identify urine-based biomarkers that are typically detected by the dipstick test and discuss the present limitations and challenges that future development for their translation into POC applications for urinalysis.


Asunto(s)
Técnicas Biosensibles , Urinálisis , Humanos , Urinálisis/métodos , Sistemas de Atención de Punto , Microscopía , Biomarcadores
18.
Int J Mol Sci ; 23(20)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36293452

RESUMEN

Computational modeling can provide a mechanistic and quantitative framework for describing intracellular spatial heterogeneity of solutes such as oxygen partial pressure (pO2). This study develops and evaluates a finite-element model of oxygen-consuming mitochondrial bioenergetics using the COMSOL Multiphysics program. The model derives steady-state oxygen (O2) distributions from Fickian diffusion and Michaelis-Menten consumption kinetics in the mitochondria and cytoplasm. Intrinsic model parameters such as diffusivity and maximum consumption rate were estimated from previously published values for isolated and intact mitochondria. The model was compared with experimental data collected for the intracellular and mitochondrial pO2 levels in human cervical cancer cells (HeLa) in different respiratory states and under different levels of imposed pO2. Experimental pO2 gradients were measured using lifetime imaging of a Förster resonance energy transfer (FRET)-based O2 sensor, Myoglobin-mCherry, which offers in situ real-time and noninvasive measurements of subcellular pO2 in living cells. On the basis of these results, the model qualitatively predicted (1) the integrated experimental data from mitochondria under diverse experimental conditions, and (2) the impact of changes in one or more mitochondrial processes on overall bioenergetics.


Asunto(s)
Consumo de Oxígeno , Oxígeno , Humanos , Mioglobina/metabolismo , Simulación por Computador , Metabolismo Energético
19.
Sensors (Basel) ; 22(17)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36080839

RESUMEN

When driving the piezoelectric transducer (PT: piezo transducer), which is a key device, it is important for the ultrasonic system (using ultrasonic waves of 20 kHz or higher) to operate at a resonant frequency that can maximize the conversion of mechanical energy (vibration) from electrical energy. The resonant frequency of the PT changes during the actual operation according to the load fluctuations and environmental conditions. Therefore, to maintain a stable output in an ultrasonic system, it is essential to track the resonant frequency in a short time. In particular, fast resonant frequency tracking (RFT: resonant frequency tracking) is an important factor in the medical ultrasonic system, i.e., the system applied in this thesis. The reason is that in the case of a medical ultrasonic system, heat-induced skin necrosis, etc., may cause the procedure to be completed within a short period of time. Therefore, tracking the RFT time for maximum power transfer is an important factor; in this thesis, we propose a new high-speed RFT method. The proposed method finds the whole system resonance frequency by using the transient phenomenon (underdamped response characteristic) that appears in an impedance system, such as an ultrasonic generator, and uses this to derive the mechanical resonance frequency of the PT. To increase the accuracy of the proposed method, parameter fluctuations of the pressure of the PT, the equivalent circuit impedance analysis of the PT, and a MATLAB simulation were performed. Through this, the correlation between the resonance frequency of the ultrasonic system, including the LC filter with nonlinear characteristics and the mechanical resonance frequency of the PT, was analyzed. Based on the analyzed results, a method for tracking the mechanical resonance frequency that can transfer the maximum output to the PT is proposed in this thesis. Experiments show that using the proposed high-speed RFT method, the ultrasonic system can track the mechanical resonance frequency of the PT with high accuracy in a short time.


Asunto(s)
Transductores , Ultrasonido , Simulación por Computador , Diseño de Equipo , Vibración
20.
Polymers (Basel) ; 14(17)2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36080518

RESUMEN

Polymer electrolytes (PEs) based on poly(ethylene oxide) (PEO) have gained increasing interest in lithium-ion batteries (LIBs) and are expected to solve the safety issue of commercial liquid electrolytes due to their excellent thermal and mechanical stability, suppression of lithium dendrites and shortened battery assembly process. However, challenges, such as high interfacial resistance between electrolyte and electrodes and poor ionic conductivity (σ) at room temperature (RT), still limit the use of PEO-based PEs. In this work, an in situ PEO-based polymer electrolyte consisting of polyethylene glycol dimethacrylate (PEGDMA) 1000, lithium bis(fluorosulfonyl)imide (LiFSI) and DMF is cured on a LiFePO4 (LFP) cathode to address the above-mentioned issues. As a result, optimized PE shows a promising σ and lithium-ion transference number (tLi+) of 6.13 × 10-4 S cm-1 and 0.63 at RT and excellent thermal stability up to 136 °C. Moreover, the LiFePO4//Li cell assembled by in situ PE exhibits superior discharge capacity (141 mAh g-1) at 0.1 C, favorable Coulombic efficiency (97.6%) after 100 cycles and promising rate performance. This work contributes to modifying PEO-based PE to force the interfacial contact between the electrolyte and the electrode and to improve LIBs' performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...