Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 101(1): 017005, 2008 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-18764147

RESUMEN

Pressure- and temperature-dependent heat capacity and electrical resistivity experiments on Sn- and La-doped CeRhIn5 are reported for two samples with specific concentrations, Ce(0.90)La(0.10)RhIn5 and CeRhIn(4.84)Sn(0.16), which present the same TN=2.8 K. The obtained P-T phase diagrams for doped CeRhIn5 compared to that for the pure compound show that Sn doping shifts the diagram to lower pressures while La doping does exactly the opposite, indicating that the important energy scale to define the pressure range for superconductivity in CeRhIn5 is the strength of the on-site Kondo coupling.

2.
J Neurosci ; 18(16): 6608-22, 1998 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-9698347

RESUMEN

Neurons in the medial superior olive (MSO) are thought to encode interaural time differences (ITDs), the main binaural cues used for localizing low-frequency sounds in the horizontal plane. The underlying mechanism is supposed to rely on a coincidence of excitatory inputs from the two ears that are phase-locked to either the stimulus frequency or the stimulus envelope. Extracellular recordings from MSO neurons in several mammals conform with this theory. However, there are two aspects that remain puzzling. The first concerns the role of the MSO in small mammals that have relatively poor low-frequency hearing and whose heads generate only very small ITDs. The second puzzling aspect of the scenario concerns the role of the prominent binaural inhibitory inputs to MSO neurons. We examined these two unresolved issues by recording from MSO cells in the Mexican free-tailed bat. Using sinusoidally amplitude-modulated tones, we found that the ITD sensitivities of many MSO cells in the bat were remarkably similar to those reported for larger mammals. Our data also indicate an important role for inhibition in sharpening ITD sensitivity and increasing the dynamic range of ITD functions. A simple model of ITD coding based on the timing of multiple inputs is proposed. Additionally, our data suggest that ITD coding is a by-product of a neuronal circuit that processes the temporal structure of sounds. Because of the free-tailed bat's small head size, ITD coding is most likely not the major function of the MSO in this small mammal and probably other small mammals.


Asunto(s)
Quirópteros/fisiología , Oído/fisiología , Núcleo Olivar/fisiología , Localización de Sonidos/fisiología , Estimulación Acústica/métodos , Animales , Vías Auditivas/fisiología , Señales (Psicología) , Modelos Neurológicos , Neuronas/fisiología , Núcleo Olivar/citología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA