Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant J ; 117(3): 747-765, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37926922

RESUMEN

Brassinazole Resistant 1 (BZR1) and bri1 EMS Suppressor 1 (BES1) are key transcription factors that mediate brassinosteroid (BR)-responsive gene expression in Arabidopsis. The BZR1/BES1 family is composed of BZR1, BES1, and four BES1/BZR1 homologs (BEH1-BEH4). However, little is known about whether BEHs are regulated by BR signaling in the same way as BZR1 and BES1. We comparatively analyzed the functional characteristics of six BZR1/BES1 family members and their regulatory mechanisms in BR signaling using genetic and biochemical analyses. We also compared their subcellular localizations regulated by the phosphorylation status, interaction with GSK3-like kinases, and heterodimeric combination. We found that all BZR1/BES1 family members restored the phenotypic defects of bri1-5 by their overexpression. Unexpectedly, BEH2-overexpressing plants showed the most distinct phenotype with enhanced BR responses. RNA-Seq analysis indicated that overexpression of both BZR1 and BEH2 regulates BR-responsive gene expression, but BEH2 has a much greater proportion of BR-independent gene expression than BZR1. Unlike BZR1 and BES1, the BR-regulated subcellular translocation of the four BEHs was not tightly correlated with their phosphorylation status. Notably, BEH1 and BEH2 are predominantly localized in the nucleus, which induces the nuclear accumulation of other BZR1/BES1 family proteins through heterodimerization. Altogether, our comparative analyses suggest that BEH1 and BEH2 play an important role in the functional interaction between BZR1/BES1 family transcription factors.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Triazoles , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Glucógeno Sintasa Quinasa 3/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
J Exp Bot ; 73(5): 1415-1428, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-34718527

RESUMEN

Unlike the indispensable function of the steroid hormone brassinosteroid (BR) in regulating plant growth and development, the metabolism of secondary metabolites regulated by BR is not well known. Here we show that BR reduces carotenoid accumulation in Arabidopsis seedlings. BR-deficient or BR-insensitive mutants accumulated higher content of carotenoids than wild-type plants, whereas BR treatment reduced carotenoid content. We demonstrated that BR transcriptionally suppresses 4-HYDROXYPHENYLPYRUVATE DIOXYGENASE (HPPD) expression involved in carotenogenesis via plastoquinone production. We found that the expression of HPPD displays an oscillation pattern that is expressed more strongly in dark than in light conditions. Moreover, BR appeared to inhibit HPPD expression more strongly in darkness than in light, leading to suppression of a diurnal oscillation of HPPD expression. BR-responsive transcription factor BRASSINAZOLE RESISTANT 1 (BZR1) directly bound to the promoter of HPPD, and HPPD suppression by BR was increased in the bzr1-1D gain-of-function mutation. Interestingly, dark-induced HPPD expression did not cause carotenoid accumulation, due to down-regulation of other carotenoid biosynthetic genes in the dark. Our results suggest that BR regulates different physiological responses in dark and light through inhibition of HPPD expression.


Asunto(s)
4-Hidroxifenilpiruvato Dioxigenasa , Proteínas de Arabidopsis , Arabidopsis , 4-Hidroxifenilpiruvato Dioxigenasa/genética , 4-Hidroxifenilpiruvato Dioxigenasa/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Carotenoides/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
Biosens Bioelectron ; 191: 113468, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34233257

RESUMEN

To resolve time-consuming and imperceptible monitoring problems in the traditional systematic evolution of ligands by exponential enrichment (SELEX), we report gold nanoparticle-assisted SELEX (GNP-SELEX) as a visual, proofreading, and self-monitoring platform and its application to small molecule-binding single-stranded DNA (ssDNA) aptasensors. Through the colorimetric changes between rounds, GNP-SELEX enabled the rapid determination of target-specific aptamer library enrichment with neither target modification nor extra monitoring process. We identified ssDNA aptamers with high selectivity and binding affinity by targeting two small molecules (brassinolide; BL and bisphenol A; BPA) as a model. The rational design of selected aptamers by 3D molecular simulation increased their ability to detect BL or BPA in real samples as bioreceptors. These results suggest that GNP-SELEX is useful as a self-monitoring platform to discover ssDNA aptamers as well as to develop aptasensors for diverse targets in a rapid and simple way.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Nanopartículas del Metal , ADN de Cadena Simple , Oro , Técnica SELEX de Producción de Aptámeros
4.
Plant Cell ; 30(8): 1848-1863, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30065046

RESUMEN

Crosstalk between signaling pathways is an important feature of complex regulatory networks. How signal crosstalk circuits are tailored to suit different needs of various cell types remains a mystery in biology. Brassinosteroid (BR) and abscisic acid (ABA) antagonistically regulate many aspects of plant growth and development through direct interactions between components of the two signaling pathways. Here, we show that BR and ABA synergistically regulate stomatal closure through crosstalk between the BR-activated kinase CDG1-LIKE1 (CDL1) and the OPEN STOMATA1 (OST1) of the ABA signaling pathway in Arabidopsis thaliana We demonstrate that the cdl1 mutant displayed reduced sensitivity to ABA in a stomatal closure assay, similar to the ost1 mutant. CDL1 and the BR receptor BR-INSENSITIVE1, but not other downstream components of the BR signaling pathway, were required for BR regulation of stomatal movement. Genetic and biochemical experiments demonstrated that CDL1 activates OST1 by phosphorylating it on residue Ser-7. BR increased phosphorylation of OST1, and the BR-induced OST1 activation was abolished in cdl1 mutants. Moreover, we found that ABA activates CDL1 in an OST1-dependent manner. Taken together, our findings illustrate a cell-type-specific BR signaling branch through which BR acts synergistically with ABA in regulating stomatal closure.


Asunto(s)
Ácido Abscísico/farmacología , Brasinoesteroides/farmacología , Estomas de Plantas/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Fosforilación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...