Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Tissue Eng Regen Med ; 16(5): 513-523, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31624706

RESUMEN

Background: Enhancement and maintenance of the stemness of mesenchymal stem cells (MSCs) is one of the most important factors contributing to the successful in vivo therapeutic application of these cells. In this regard, three-dimensional (3D) spheroid formation has been developed as reliable method for increasing the pluripotency of MSCs. Moreover, using a new protocol, we have previously shown that dental tissues of extracted wisdom teeth can be effectively cryopreserved for subsequent use as a source of autologous stem cells. The main purpose of this study is to analyze the stemness and in vitro osteogenic differentiation potential of 3D spheroid dental MSCs compared with conventional mono-layer cultured MSCs. Methods: In this study, MSC-characterized stem cells were isolated and cultured from long-term cryopreserved dental follicles (hDFSCs), and then 2D hDFSCs were cultured under 3D spheroid-forming conditions using a newly designed microchip dish. The spheroids (3D hDFSCs) thus produced were investigated and characterized with respect to stemness, MSC marker expression, apoptosis, cell cycle analysis, extracellular matrix (ECM) production, and osteogenic and adipogenic differentiation properties. Results: In terms of MSC and senescence markers, spheroid cells showed no difference when compared with 2D hDFSCs; however, 3D hDFSCs were observed to have a higher proportion of cell cycle arrest and a larger number of apoptotic cells. Moreover, spheroids showed substantially increased levels of pluripotency marker (early transcription factors) and ECM protein expression. Compared with 2D hDFSCs, there was also a notable enhancement in the osteogenic induction potential of spheroids, although no differences were observed with respect to in vitro adipogenesis. Conclusion: To the best of our knowledge, this is the first study to demonstrate the application of a spheroid culture system for dental follicle-derived stem cells using a microchip dish. Although further studies are needed, including in vivo transplantation, the results obtained in this study indicate that spheroid hDFSCs derived from cryopreserved dental follicle tissues could be used as a valuable source of autologous stem cells for bone tissue regeneration.


Asunto(s)
Criopreservación/métodos , Células Madre/citología , Fosfatasa Alcalina/metabolismo , Apoptosis/fisiología , Ciclo Celular/fisiología , Diferenciación Celular/fisiología , Células Cultivadas , Humanos , Osteogénesis/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa
2.
Anim Cells Syst (Seoul) ; 23(4): 275-287, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31489249

RESUMEN

A decrease in the activity of choline acetyltransferase, the enzyme responsible for acetylcholine synthesis in the cholinergic neurons cause neurological disorders involving a decline in cognitive abilities, such as Alzheimer's disease. Mesenchymal stem cells (MSCs) can be used as an efficient therapeutic agents due to their neuronal differentiation potential. Different source derived MSCs may have different differentiation potential under different inductions. Various in vitro protocols have been developed to differentiate MSCs into specific neurons but the comparative effect of different protocols utilizing same source derived MSCs, is not known. To address this issue, dental pulp derived MSCs (DPSCs) were differentiated into cholinergic neurons using three different protocols. In protocol I, DPSCs were pre-induced with serum-free ADMEM containing 1 mM of ß-mercaptoethanol for 24 h and then incubated with 100 ng/ml nerve growth factor (NGF) for 6 days. Under protocol II, DPSCs were cultured in serum-free ADMEM containing 15 µg/ml of D609 (tricyclodecan-9-yl-xanthogenate) for 4 days. Under protocol III, the DPSCs were cultured in serum-free ADMEM containing 10 ng/ml of basic fibroblast growth factor (bFGF), 50 µM of forskolin, 250 ng/ml of sonic hedgehog (SHH), and 0.5 µM of retinoic acid (RA) for 7 days. The DPSCs were successfully trans-differentiated under all the protocols, exhibited neuron-like morphologies with upregulated cholinergic neuron-specific markers such as ChAT, HB9, ISL1, BETA-3, and MAP2 both at mRNA and protein levels in comparison to untreated cells. However, protocol III-induced cells showed the highest expression of the cholinergic markers and secreted the highest level of acetylcholine.

3.
Int J Med Sci ; 14(13): 1418-1429, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29200956

RESUMEN

We previously described a novel tissue cryopreservation protocol to enable the safe preservation of various autologous stem cell sources. The present study characterized the stem cells derived from long-term cryopreserved dental pulp tissues (hDPSCs-cryo) and analyzed their differentiation into definitive endoderm (DE) and hepatocyte-like cells (HLCs) in vitro. Human dental pulp tissues from extracted wisdom teeth were cryopreserved as per a slow freezing tissue cryopreservation protocol for at least a year. Characteristics of hDPSCs-cryo were compared to those of stem cells from fresh dental pulps (hDPSCs-fresh). hDPSCs-cryo were differentiated into DE cells in vitro with Activin A as per the Wnt3a protocol for 6 days. These cells were further differentiated into HLCs in the presence of growth factors until day 30. hDPSCs-fresh and hDPSCs-cryo displayed similar cell growth morphology, cell proliferation rates, and mesenchymal stem cell character. During differentiation into DE and HLCs in vitro, the cells flattened and became polygonal in shape, and finally adopted a hepatocyte-like shape. The differentiated DE cells at day 6 and HLCs at day 30 displayed significantly increased DE- and hepatocyte-specific markers at the mRNA and protein level, respectively. In addition, the differentiated HLCs showed detoxification and glycogen storage capacities, indicating they could share multiple functions with real hepatocytes. These data conclusively show that hPDSCs-cryo derived from long-term cryopreserved dental pulp tissues can be successfully differentiated into DE and functional hepatocytes in vitro. Thus, preservation of dental tissues could provide a valuable source of autologous stem cells for tissue engineering.


Asunto(s)
Diferenciación Celular/genética , Endodermo/citología , Hepatocitos/citología , Células Madre Mesenquimatosas/citología , Proliferación Celular/genética , Criopreservación , Pulpa Dental/citología , Endodermo/metabolismo , Glucógeno/metabolismo , Hepatocitos/metabolismo , Humanos , Células Madre Mesenquimatosas/metabolismo , Ingeniería de Tejidos
4.
J Nanosci Nanotechnol ; 17(4): 2585-588, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29659213

RESUMEN

Porcelain-fused-to-metal crown is one of the widely-used prostheses among the dental porcelain restorations. Nonprecious metals like Ni­Cr and Co­Cr have extensively been used for metal-ceramic restorations due to advantages such as inexpensive price, hardness, durability, resistance to deformation, thin thickness of metal of porcelain area, and other mechanical and physical properties. However, the immediate advantage of the Co­Cr alloy is comparable performance to other base metal alloys, but without an allergenic nickel component. To achieve clinical longevity of porcelain-fused-to-metal (PFM) crowns, it is essential to have adequate bond strength between the metal substrate and porcelain. Any type of metal-ceramic fracture failure can become a costly and timeconsuming problem, both in the clinic and laboratory. Therefore, the suitability of the Co­Cr alloy for dental applications is critically associated with its ceramic bonding capacity. In this study, Co­Cr metal alloys modified by acid-etching and sandblasting, oxide layer was formed for subsequent bonding to porcelain ceramics. By both acid-etching and sandblasting oxide layer was formed and showed higher bonding strength at a proper condition, but debonding was occurred at porcelain layer so that they showed highest bonding strength by combined these two kind of surface treatment. Because the oxide film was formed more densely in a vacuum at the portions where more sophisticated concavo-convex were formed on the surface of a metal.


Asunto(s)
Aleaciones de Cromo/química , Aleaciones Dentales/química , Recubrimiento Dental Adhesivo , Porcelana Dental/química , Ensayo de Materiales , Níquel/química , Óxidos/química
5.
J Tissue Eng Regen Med ; 11(2): 489-500, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-25052907

RESUMEN

The main purpose of this study was to develop a cryopreservation method for human dental follicle tissue to maintain autologous stem cells as a resource. A modified cryoprotectant, consisting of 0.05 m glucose, 0.05 m sucrose and 1.5 m ethylene glycol in phosphate-buffered saline (PBS) was employed, with a slow-ramp freezing rate. We observed > 70% of cell survival rate after 3 months of tissue storage. Isolated and cultured human dental stem cells (hDSCs) from cryopreserved dental follicles expressed mesenchymal stem cell markers at a level similar to that of hDSCs from fresh tissue. They also successfully differentiated in vitro into the mesenchymal lineage, osteocytes, adipocytes and chondrocytes under specific inductions. Using immunohistochemistry, the early transcription factors OCT4, NANOG and SOX2 were moderately or weakly detected in the nucleus of both fresh and cryopreserved dental follicles. In addition, p63, CCND1, BCL2 and BAX protein expression levels were the same in both fresh and cryopreserved tissues. However, the positive-cell ratio and intensity of p53 protein was higher in cryopreserved tissues than in fresh tissues, indicating direct damage of the freeze-thawing process. Real-time PCR analysis of hDSCs at passage 2 from both fresh and cryopreserved dental follicles showed similar levels of mRNA for apoptosis- and transcription-related genes. Based on these results, a newly developed cryoprotectant, along with a slow ramp rate freezing procedure allows for long-term dental tissue preservation for later use as an autologous stem cell resource in regenerative cell therapy. Copyright © 2014 John Wiley & Sons, Ltd.


Asunto(s)
Criopreservación , Saco Dental/citología , Células Madre Mesenquimatosas/citología , Adipocitos/citología , Adolescente , Adulto , Apoptosis , Linaje de la Célula , Supervivencia Celular , Condrocitos/citología , Crioprotectores/química , Saco Dental/metabolismo , Femenino , Perfilación de la Expresión Génica , Humanos , Inmunohistoquímica , Masculino , Tercer Molar/citología , Osteocitos/citología , Ingeniería de Tejidos , Adulto Joven
6.
Differentiation ; 90(1-3): 48-58, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26493125

RESUMEN

In our previous study, dental follicle tissues from extracted wisdom teeth were successfully cryopreserved for use as a source of stem cells. The goals of the present study were to investigate the immunomodulatory properties of stem cells from fresh and cryopreserved dental follicles (fDFCs and cDFCs, respectively) and to analyze in vivo osteogenesis after transplantation of these DFCs into experimental animals. Third passage fDFCs and cDFCs showed similar expression levels of interferon-γ receptor (CD119) and major histocompatibility complex class I and II (MHC I and MHC II, respectively), with high levels of CD119 and MHC I and nearly no expression of MHC II. Both fresh and cryopreserved human DFCs (hDFCs) were in vivo transplanted along with a demineralized bone matrix scaffold into mandibular defects in miniature pigs and subcutaneous tissues of mice. Radiological and histological evaluations of in vivo osteogenesis in hDFC-transplanted sites revealed significantly enhanced new bone formation activities compared with those in scaffold-only implanted control sites. Interestingly, at 8 weeks post-hDFC transplantation, the newly generated bones were overgrown compared to the original size of the mandibular defects, and strong expression of osteocalcin and vascular endothelial growth factor were detected in the hDFCs-transplanted tissues of both animals. Immunohistochemical analysis of CD3, CD4, and CD8 in the ectopic bone formation sites of mice showed significantly decreased CD4 expression in DFCs-implanted tissues compared with those in control sites. These findings indicate that hDFCs possess immunomodulatory properties that involved inhibition of the adaptive immune response mediated by CD4 and MHC II, which highlights the usefulness of hDFCs in tissue engineering. In particular, long-term preserved dental follicles could serve as an excellent autologous or allogenic stem cell source for bone tissue regeneration as well as a valuable therapeutic agent for immune diseases.


Asunto(s)
Regeneración Ósea , Saco Dental/citología , Saco Dental/inmunología , Inmunomodulación , Osteogénesis , Células Madre/citología , Células Madre/inmunología , Inmunidad Adaptativa , Animales , Antígenos CD4/inmunología , Antígenos CD4/metabolismo , Proliferación Celular , Criopreservación , Saco Dental/trasplante , Genes MHC Clase II/inmunología , Humanos , Masculino , Mandíbula/cirugía , Ratones , Trasplante de Células Madre , Porcinos , Porcinos Enanos , Ingeniería de Tejidos , Andamios del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...