Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Aging Cell ; 23(3): e14061, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38105557

RESUMEN

Once tooth development is complete, odontoblasts and their progenitor cells in the dental pulp play a major role in protecting tooth vitality from external stresses. Hence, understanding the homeostasis of the mature pulp populations is just as crucial as understanding that of the young, developing ones for managing age-related dentinal damage. Here, it is shown that loss of Cpne7 accelerates cellular senescence in odontoblasts due to oxidative stress and DNA damage accumulation. Thus, in Cpne7-null dental pulp, odontoblast survival is impaired, and aberrant dentin is extensively formed. Intraperitoneal or topical application of CPNE7-derived functional peptide, however, alleviates the DNA damage accumulation and rescues the pathologic dentin phenotype. Notably, a healthy dentin-pulp complex lined with metabolically active odontoblasts is observed in 23-month-old Cpne7-overexpressing transgenic mice. Furthermore, physiologic dentin was regenerated in artificial dentinal defects of Cpne7-overexpressing transgenic mice. Taken together, Cpne7 is indispensable for the maintenance and homeostasis of odontoblasts, while promoting odontoblastic differentiation of the progenitor cells. This research thereby introduces its potential in oral disease-targeted applications, especially age-related dental diseases involving dentinal loss.


Asunto(s)
Envejecimiento Prematuro , Ratones , Animales , Pulpa Dental , Senescencia Celular/genética , Odontoblastos , Diferenciación Celular/genética , Ratones Transgénicos
2.
Oral Dis ; 29(4): 1644-1656, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35199415

RESUMEN

OBJECTIVES: This study aimed to identify formation of tubular dentin induced by transforming growth factor-ß (TGF-ß) and bone morphogenic protein (BMP) signaling pathway in dental epithelial cells. METHODS: We collected conditioned medium (CM) of rTGF-ß1/rBMP-2-treated HAT-7 and treated to MDPC-23 cells. The expression levels of odontoblast differentiation markers, KLF4, DMP1, and DSP were evaluated by real-time PCR and Western blot analysis. To evaluate whether CM of rTGF-ß1/rBMP-2 induces tubular dentin formation, we made a beagle dog tooth defect model. RESULTS: Here, we show that Cpne7 is regulated by Smad4-dependent TGF-ß1/BMP2 signaling pathway in dental epithelial cells. CM of rTGF-ß1/rBMP-2 treated HAT-7 or rCPNE7 raises the expression levels of KLF4, DMP1, and DSP in MDPC-23 cells. When rTGF-ß1 or rBMP-2 is directly treated to MDPC-23 cells, however, expression levels of Cpne7-regulated genes remain unchanged. In a beagle dog defect model, application of rTGF-ß1/BMP2-treated CM resulted in tubular tertiary dentin mixed with osteodentin at cavity-prepared sites, while rTGF-ß1 group exhibited homogenous osteodentin. CONCLUSIONS: Taken together, Smad4-dependent TGF-ß1/BMP2 signaling regulates Cpne7 in dental epithelial cells, and CPNE7 protein secreted from pre-ameloblasts mediates odontoblast differentiation via epithelial-mesenchymal interaction.


Asunto(s)
Proteínas de la Matriz Extracelular , Factor de Crecimiento Transformador beta1 , Perros , Animales , Factor de Crecimiento Transformador beta1/farmacología , Factor de Crecimiento Transformador beta1/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Sialoglicoproteínas/genética , Fosfoproteínas/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Factor de Crecimiento Transformador beta/metabolismo , Odontoblastos , Transducción de Señal , Células Epiteliales/metabolismo , Diferenciación Celular , Dentina/metabolismo
3.
Arch Oral Biol ; 143: 105531, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36063644

RESUMEN

OBJECTIVE: CPNE7-derived functional peptide (CPNE7-DP) has been introduced as a bioactive therapeutics for dentin diseases. CPNE7-DP regenerates tubular dentin on the pulpal side and occlude dentinal tubules. CPNE7-DP was capable to treat dentin hypersensitivity typically associated with dentinal wear at the neck of the tooth. However, the role of CPNE7-DP in another common dentin disease, dental caries, remains uninvestigated. In this study, we evaluated the potential application of CPNE7-DP in dentin caries using an experimental dentin caries model in rats. DESIGN: The stability of CPNE7-DP in caries-like environments including pathologic bacteria of caries or low pH was tested. We established a nutrition-time/hyposalivation-based dental caries rat model by inoculating caries-inducing bacteria and diet for sufficient time. Glycopyrrolate has been treated to induce reversible hyposalivation for accelerating caries progression. Then the tubular dentin regeneration was investigated with histologic methods. Also, modulation of inflammation or autophagy by CPNE7-DP was investigated with marker gene expression in human dental pulp cells (hDPCs) and immunohistochemistry. RESULTS: CPNE7-DP was stable with caries-inducing bacteria and low pH. Establishment of dentin caries was confirmed with radiographic and histologic evaluation. CPNE7-DP regenerated a substantial amount of tubular tertiary dentin and alleviated the pulp inflammation of dentin caries. Under inflammatory conditions, CPNE7-DP reduced the expression of inflammatory cytokines. These phenomena could be the consequence of the modulation of autophagy by CPNE7-DP, which reactivates inflamed odontoblasts. CONCLUSIONS: Overall, CPNE7-DP, which repairs caries through physiological dentin regeneration, might help overcoming the limitations of current restorative caries treatments.


Asunto(s)
Caries Dental , Dentina Secundaria , Xerostomía , Animales , Citocinas/metabolismo , Caries Dental/microbiología , Pulpa Dental/patología , Dentina/patología , Glicopirrolato/metabolismo , Humanos , Inflamación/metabolismo , Odontoblastos/metabolismo , Péptidos , Ratas , Regeneración
4.
Int J Mol Sci ; 22(23)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34884488

RESUMEN

In dental pulp, diverse types of cells mediate the dental pulp immunity in a highly complex and dynamic manner. Yet, 3D spatiotemporal changes of various pulpal immune cells dynamically reacting against foreign pathogens during immune response have not been well characterized. It is partly due to the technical difficulty in detailed 3D comprehensive cellular-level observation of dental pulp in whole intact tooth beyond the conventional histological analysis using thin tooth slices. In this work, we validated the optical clearing technique based on modified Murray's clear as a valuable tool for a comprehensive cellular-level analysis of dental pulp. Utilizing the optical clearing, we successfully achieved a 3D visualization of CD11c+ dendritic cells in the dentin-pulp complex of a whole intact murine tooth. Notably, a small population of unique CD11c+ dendritic cells extending long cytoplasmic processes into the dentinal tubule while located at the dentin-pulp interface like odontoblasts were clearly visualized. 3D visualization of whole murine tooth enabled a reliable observation of these rarely existing cells with a total number less than a couple of tens in one tooth. These CD11c+ dendritic cells with processes in the dentinal tubule were significantly increased in the dental pulpitis model induced by mechanical and chemical irritation. Additionally, the 3D visualization revealed a distinct spatial 3D arrangement of pulpal CD11c+ cells in the pulp into a front-line barrier-like formation in the pulp within 12 h after the irritation. Collectively, these observations demonstrated the unique capability of optical clearing-based comprehensive 3D cellular-level visualization of the whole tooth as an efficient method to analyze 3D spatiotemporal changes of various pulpal cells in normal and pathological conditions.


Asunto(s)
Antígeno CD11c/metabolismo , Células Dendríticas/inmunología , Pulpa Dental/inmunología , Imagenología Tridimensional/métodos , Pulpitis/inmunología , Diente/inmunología , Animales , Células Dendríticas/metabolismo , Células Dendríticas/patología , Pulpa Dental/metabolismo , Pulpa Dental/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Pulpitis/metabolismo , Pulpitis/patología , Diente/metabolismo , Diente/patología
5.
Front Cell Dev Biol ; 9: 655498, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33981704

RESUMEN

Dentin, which composes most of the tooth structure, is formed by odontoblasts, long-lived post-mitotic cells maintained throughout the entire life of the tooth. In mature odontoblasts, however, cellular activity is significantly weakened. Therefore, it is important to augment the cellular activity of mature odontoblasts to regenerate physiological dentin; however, no molecule regulating the cellular activity of mature odontoblasts has yet been identified. Here, we suggest that copine-7 (CPNE7) can reactivate the lost functions of mature odontoblasts by inducing autophagy. CPNE7 was observed to elevate the expression of microtubule-associated protein light chain 3-II (LC3-II), an autophagy marker, and autophagosome formation in the pre-odontoblast and mature odontoblast stages of human dental pulp cells. CPNE7-induced autophagy upregulated DSP and DMP-1, odontoblast differentiation and mineralization markers, and augmented dentin formation in mature odontoblasts. Furthermore, CPNE7 also upregulated NESTIN and TAU, which are expressed in the physiological odontoblast process, and stimulated the elongation of the odontoblast process by inducing autophagy. Moreover, lipofuscin, which progressively accumulates in long-lived post-mitotic cells and hinders their proper functions, was observed to be removed in recombinant CPNE7-treated mature odontoblasts. Thus, CPNE7-induced autophagy reactivated the function of mature odontoblasts and promoted the formation of physiological dentin in vivo. On the other hand, the well-known autophagy inducer, rapamycin, promoted odontoblast differentiation in pre-odontoblasts but did not properly reactivate the function of mature odontoblasts. These findings provide evidence that CPNE7 functionally reactivates mature odontoblasts and introduce its potential for dentinal loss-targeted clinical applications.

6.
Materials (Basel) ; 13(20)2020 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-33081300

RESUMEN

We aim to examine the effects of a newly developed peptide derived from CPNE7 (Cpne7-DP) in tertiary dentin formation and peritubular space occlusion, and comprehensively evaluate its potential as a bioactive therapeutic agent. Human dental pulp cells (HDPCs) and a mouse pre-odontoblast cell line, MDPC-23, were chosen for in vitro studies to characterize lineage-specific cell responses after Cpne7-DP treatment. Whether Cpne7-DP reproduces the dentin regenerative potential of CPNE7 was tested using a beagle dog model by generating dentinal defects of various degrees in vivo. Peritubular space occlusion was further examined by scanning electron microscopy and microleakage test, while overall mineralization capacity of Cpne7-DP was tested ex vivo. CPNE7 promotes tubular dentin formation under both shallow and deep dentinal defects, and the functional peptide Cpne7-DP induces odontoblast-like differentiation in vitro, mineralization ex vivo, and tubular dentin formation in in vivo beagle dog dentin exposure and pulp exposure models. Moreover, Cpne7-DP leads to peritubular space occlusion and maintains stability under different conditions. We show that CPNE7 and its derivative functional peptide Cpne7-DP promotes dentin regeneration in dentinal defects of various degrees and that the regenerated hard tissue demonstrates the characteristics of true dentin. Limitations of the current dental materials including post-operative hypersensitivity make biological repair of dentin a field of growing interest. Here, we suggest that the dual functions of Cpne7-DP in tubular dentin formation and peritubular space occlusion are promising for the treatment of dentinal loss and sensitivity.

7.
J Mol Histol ; 50(3): 179-188, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30863901

RESUMEN

Interactions between the ectodermal and mesenchymal tissues are the basis of the central mechanism regulating tooth development. Based on this epithelial-mesenchymal interaction (EMI), we demonstrated that copine-7 (CPNE7) is secreted by preameloblasts and regulates the differentiation of mesenchymal cells of dental or non-dental origin into odontoblasts. However, the precise expression patterns of CPNE7 in the stages of tooth development have not yet been elucidated. The aim of the present study was to establish the spatiotemporal expression pattern of CPNE7 during mouse tooth development. To examine the spatiotemporal expression patterns of CPNE7 during mouse tooth development, we investigate the distribution of CPNE7 in the embryonic and postnatal developing mouse tooth. Immunohistochemistry, in situ hybridization, real-time PCR, and western blot analysis are performed to investigate the CPNE7 expression pattern during tooth development of the mandibular mouse first molar. During the initiation stage (bud stage), CPNE7 protein expression is observed in the dental epithelium but not yet in the dental mesenchyme. At E18 (bell stage), expression of CPNE7 protein and mRNA is primarily observed in ectomesenchymal cells of dental papilla. At P7 (crown formation stage), CPNE7 is localized in differentiating odontoblasts but weak expression is detected in mature ameloblasts. These findings suggest that CPNE7 secreted by dental epithelium induces the differentiation of ectomesenchymal cells into preodontoblast in concert with EMI. CPNE7 is clearly expressed in differentiating odontoblasts and the odontoblast process during dentinogenesis, but is no longer expressed in fully differentiated odontoblasts. Furthermore, CPNE7 is expressed in the Hertwig's epithelial root sheath (HERS) and in the facing preodontoblasts during root dentin formation. Taken together, these results illustrate the dynamic expression of CPNE7 during tooth development and suggest its important function in entire stages of tooth development.


Asunto(s)
Diferenciación Celular/genética , Dentinogénesis/genética , Proteínas de la Membrana/metabolismo , Diente Molar/crecimiento & desarrollo , Diente/crecimiento & desarrollo , Ameloblastos/citología , Ameloblastos/metabolismo , Animales , Papila Dental/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Proteínas de la Membrana/genética , Ratones , Diente Molar/metabolismo , Odontoblastos/citología , Odontoblastos/metabolismo , Diente/metabolismo
8.
Connect Tissue Res ; 60(5): 419-430, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30734591

RESUMEN

Introduction: Preameloblast-conditioned medium (PA-CM), as a mixture of dental epithelium-derived factors, has been reported to regenerate dentin and periodontal tissues in vitro and in vivo. The aim of this study was to investigate the biological effect of Cpne7 on the proliferation, migration, and cementoblast differentiation of periodontal cells in vitro, and on the regeneration of periodontal tissue using periodontal defect model with canine in vivo. Materials and methods: The effect of Cpne7 on cell proliferation, migration, and cementoblast differentiation of periodontal cells were evaluated in vitro. A periodontal defect canine model was designed and the defects were divided into five groups: Group 1: No treatment (negative control), Group 2: Collagen carrier only, Group 3: PA-CM with collagen carrier (positive control), Group 4: PA-CM + CPNE7 Antibody (Ab) with collagen carrier, and Group 5: recombinant CPNE7 (rCPNE7) protein with collagen carrier. Results: Cpne7 was expressed in HERS cells and periodontal ligament (PDL) fibers. By real-time PCR, Cpne7 increased expression of Cap compared to the control. In the periodontal defect canine model, rCPNE7 or PA-CM regenerated periodontal complex, and the arrangement of the newly formed PDL-like fibers were perpendicular to the newly formed cementum and alveolar bone like Sharpey's fibers in natural teeth, while PA-CM + CPNE7 Ab showed irregular arrangement of the newly formed PDL-like fibers compared to the rCPNE7 or PA-CM group. Conclusion: These findings suggest that Cpne7 may have a functional role in periodontal regeneration by supporting periodontal cell attachment to cementum and facilitating physiological arrangement of PDL fibers.


Asunto(s)
Proteínas de la Membrana/metabolismo , Periodoncio/fisiología , Regeneración , Adolescente , Ameloblastos/citología , Ameloblastos/efectos de los fármacos , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Cementogénesis/efectos de los fármacos , Medios de Cultivo Condicionados/farmacología , Perros , Humanos , Ratones , Periodoncio/citología , Proteínas Recombinantes/farmacología , Regeneración/efectos de los fármacos , Diente/crecimiento & desarrollo , Diente/metabolismo , Adulto Joven
9.
J Mol Histol ; 49(3): 265-276, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29525888

RESUMEN

Preameloblast-conditioned medium (PACM) has been reported as a potent dentin regenerative material, but its effects as a mixture on periodontal regeneration and the role of CPNE7 in PACM are not known. The purpose of this study is to evaluate the histologic and histomorphometric effects of preameloblast-conditioned medium (PACM) and CPNE7 on periodontal tissue healing in dogs. Seventy-two mandibular premolar roots from ten dogs were extracted and randomly divided into six groups (n = 12 each): (1) positive control group; (2) negative control group; (3) cementum-removed and PACM-treated group; (4) cementum-preserved and PACM-treated group; (5) CPNE7-inactivated PACM-treated group; and (6) recombinant CPNE7-treated group. The extracted roots were replanted into extraction sockets for 4 and 8 weeks and analyzed histologically. Most of the root surfaces in the negative control group showed ankylosis; and those in the experimental groups showed newly formed PDL-like and cementum-like tissues. Histomorphometric analysis of horizontal sections showed that the mean length of the PDL on the roots of the positive controls was similar to those in cementum-removed or -preserved and PACM-treated group at 8 weeks (p = 1.08). Sagittal sections showed that the mean length of the new cementum on the roots in cementum-removed and PACM-treated group was significantly greater than that in CPNE7-inactivated PACM-treated group (p = 0.037). The mean length of the newly formed PDL on the roots in CPNE7- inactivated PACM-treated and rCPNE7-treated groups was significantly greater than that in the negative controls at 8 weeks (p = 0.037, p = 0.036). The use of PACM and CPNE7 in tooth replantation resulted in increased PDL and cementum formation, suggesting the beneficial role of PACM and CPNE7 in periodontal tissue healing.


Asunto(s)
Ameloblastos/citología , Proteínas Portadoras/metabolismo , Medios de Cultivo Condicionados/farmacología , Proteínas de la Membrana/farmacología , Raíz del Diente/efectos de los fármacos , Animales , Diente Premolar , Cemento Dental , Perros , Ligamento Periodontal/ultraestructura , Reimplante Dental
10.
Materials (Basel) ; 10(9)2017 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-28880245

RESUMEN

We aimed to evaluate the efficacy of demineralized dentin matrix (DDM) fixed with recombinant human bone morphogenetic protein-2 (rhBMP-2) through an experimental and a clinical study. Unilateral upper second and third premolars of eight beagles were extracted. A mucoperiosteal flap was elevated around the extraction socket, and a bone defect was made using a surgical drill. Each DDM was fixed with rhBMP-2, and autogenous bone was grafted at the bone defect area with a collagenous membrane. The beagles were euthanized at two, four, eight, and 12 weeks after receiving the bone graft. Block specimens involving grafted bone and surrounding natural bone were extracted. A total of 23 patients who received bone grafts using human DDM fixed with rhBMP-2 (AutoBT BMP) with implant placements (36 implants; maxilla: 14, mandible: 22) were selected. The implant stability, marginal bone loss, and clinical outcome were evaluated. Three trephine cores were harvested fourmonths after bone grafting, and histologic examination was performed. In the histological evaluation performed four weeks after the bone graft, autogenous bone showed 52% new bone formation and DDM fixed with rhBMP-2 showed 33% new bone formation. Twelve weeks after the bone graft, autogenous bone showed 75% new bone formation and DDM fixed with rhBMP-2 showed 48% new bone formation. In the clinical study, favorable osseointegration was obtained in 35 out of 36 implant sites (one case of osseointegration failure). In all cases, severe complications were not observed. Histomorphometrically, new bone formation was observed in 14.98% of the cases. The residual DDM particles were 6.22%. AutoBT BMP provides good osteoinductive and osteoconductive potential and clinical efficacy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...