Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 5708, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987536

RESUMEN

We report primordial aqueous alteration signatures in water-soluble organic molecules from the carbonaceous asteroid (162173) Ryugu by the Hayabusa2 spacecraft of JAXA. Newly identified low-molecular-weight hydroxy acids (HO-R-COOH) and dicarboxylic acids (HOOC-R-COOH), such as glycolic acid, lactic acid, glyceric acid, oxalic acid, and succinic acid, are predominant in samples from the two touchdown locations at Ryugu. The quantitative and qualitative profiles for the hydrophilic molecules between the two sampling locations shows similar trends within the order of ppb (parts per billion) to ppm (parts per million). A wide variety of structural isomers, including α- and ß-hydroxy acids, are observed among the hydrophilic molecules. We also identify pyruvic acid and dihydroxy and tricarboxylic acids, which are biochemically important intermediates relevant to molecular evolution, such as the primordial TCA (tricarboxylic acid) cycle. Here, we find evidence that the asteroid Ryugu samples underwent substantial aqueous alteration, as revealed by the presence of malonic acid during keto-enol tautomerism in the dicarboxylic acid profile. The comprehensive data suggest the presence of a series for water-soluble organic molecules in the regolith of Ryugu and evidence of signatures in coevolutionary aqueous alteration between water and organics in this carbonaceous asteroid.

2.
Science ; 382(6677): 1411-1416, 2023 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-38127762

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) contain ≲20% of the carbon in the interstellar medium. They are potentially produced in circumstellar environments (at temperatures ≳1000 kelvin), by reactions within cold (~10 kelvin) interstellar clouds, or by processing of carbon-rich dust grains. We report isotopic properties of PAHs extracted from samples of the asteroid Ryugu and the meteorite Murchison. The doubly-13C substituted compositions (Δ2×13C values) of the PAHs naphthalene, fluoranthene, and pyrene are 9 to 51‰ higher than values expected for a stochastic distribution of isotopes. The Δ2×13C values are higher than expected if the PAHs formed in a circumstellar environment, but consistent with formation in the interstellar medium. By contrast, the PAHs phenanthrene and anthracene in Ryugu samples have Δ2×13C values consistent with formation by higher-temperature reactions.

3.
Nat Commun ; 14(1): 5284, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37723151

RESUMEN

Samples from the carbonaceous asteroid (162173) Ryugu provide information on the chemical evolution of organic molecules in the early solar system. Here we show the element partitioning of the major component ions by sequential extractions of salts, carbonates, and phyllosilicate-bearing fractions to reveal primordial brine composition of the primitive asteroid. Sodium is the dominant electrolyte of the salt fraction extract. Anions and NH4+ are more abundant in the salt fraction than in the carbonate and phyllosilicate fractions, with molar concentrations in the order SO42- > Cl- > S2O32- > NO3- > NH4+. The salt fraction extracts contain anionic soluble sulfur-bearing species such as Sn-polythionic acids (n < 6), Cn-alkylsulfonates, alkylthiosulfonates, hydroxyalkylsulfonates, and hydroxyalkylthiosulfonates (n < 7). The sulfur-bearing soluble compounds may have driven the molecular evolution of prebiotic organic material transforming simple organic molecules into hydrophilic, amphiphilic, and refractory S allotropes.

4.
Science ; 379(6634): eabn9033, 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36821691

RESUMEN

The Hayabusa2 spacecraft collected samples from the surface of the carbonaceous near-Earth asteroid (162173) Ryugu and brought them to Earth. The samples were expected to contain organic molecules, which record processes that occurred in the early Solar System. We analyzed organic molecules extracted from the Ryugu surface samples. We identified a variety of molecules containing the atoms CHNOS, formed by methylation, hydration, hydroxylation, and sulfurization reactions. Amino acids, aliphatic amines, carboxylic acids, polycyclic aromatic hydrocarbons, and nitrogen-heterocyclic compounds were detected, which had properties consistent with an abiotic origin. These compounds likely arose from an aqueous reaction on Ryugu's parent body and are similar to the organics in Ivuna-type meteorites. These molecules can survive on the surfaces of asteroids and be transported throughout the Solar System.

5.
J Chromatogr A ; 1630: 461509, 2020 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-32927393

RESUMEN

In the origins of life field understanding the abiotic polymerization of simple organic monomers (e.g., amino acids) into larger biomolecules (e.g., oligopeptides), remains a seminal challenge. Recently, preliminary observations showed a limited set of peptides formed in the presence of the plausible prebiotic phosphorylating agent, diamidophosphate (DAP), highlighting the need for an analytical tool to critically evaluate the ability of DAP to induce oligomerization of simple organics under aqueous conditions. However, performing accurate and precise, targeted analyses of short oligopeptides remains a distinct challenge in the analytical chemistry field. Here, we developed a new technique to detect and quantitate amino acids and their homopeptides in a single run using ultraperformance liquid chromatography-fluorescence detection/time of flight mass spectrometry. Over an 8-minute retention time window, 18 target analytes were identified and quantitated, 16 of which were chromatographically separated at, or near baseline resolution. Compound identity was confirmed by accurate mass analysis using a 10 ppm mass tolerance window. This method featured limits of detection < 5 nM (< 1 fmol on column) and limits of quantitation (LOQs) <15 nM (< 3 fmol on column). The LODs and LOQs were upwards of ∼28x and ∼788x lower, respectively, than previous methods for the same analytes, highlighting the quantifiable advantages of this new method. Both detectors provided good quantitative linearity (R2 > 0.985) for all analytes spanning concentration ranges ∼3 - 4 orders of magnitude. We performed a series of laboratory experiments to investigate DAP-mediated oligomerization of amino acids and peptides and analyzed experimental products with the new method. DAP readily polymerized amino acids and peptides under a range of simulated environmental conditions. This research underscores the potential of DAP to have generated oligopeptides on the primordial Earth, enhancing prebiotic chemical diversity and complexity at or near the origin of life.

6.
Meteorit Planet Sci ; 55(11): 2422-2439, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33536738

RESUMEN

The abundances, relative distributions, and enantiomeric and isotopic compositions of amines, amino acids, and hydroxy acids in Miller Range (MIL) 090001 and MIL 090657 meteorites were determined. Chiral distributions and isotopic compositions confirmed that most of the compounds detected were indigenous to the meteorites and not the result of terrestrial contamination. Combined with data in the literature, suites of these compounds have now been analyzed in a set of six CR chondrites, spanning aqueous alteration types 2.0-2.8. Amino acid abundances ranged from 17 to 3300 nmol g-1 across the six CRs; hydroxy acid abundances ranged from 180 to 1800 nmol g-1; and amine abundances ranged from 40 to 2100 nmol g-1. For amino acids and amines, the weakly altered chondrites contained the highest abundances, whereas hydroxy acids were most abundant in the more altered CR2.0 chondrite. Because water contents in the meteorites are orders of magnitude greater than soluble organics, synthesis of hydroxy acids, which requires water, may be less affected by aqueous alteration than amines and amino acids that require nitrogen-bearing precursors. Two chiral amino acids that were plausibly extraterrestrial in origin were present with slight enantiomeric excesses: L-isovaline (~10% excess) and D-ß-amino-n-butyric acid (~9% excess); further studies are needed to verify that the chiral excess in the latter compound is truly extraterrestrial in origin. The isotopic compositions of compounds reported here did not reveal definitive links between the different compound classes such as common synthetic precursors, but will provide a framework for further future in-depth analyses.

7.
Life (Basel) ; 9(2)2019 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-31174308

RESUMEN

Soluble organic compositions of extraterrestrial samples offer valuable insights into the prebiotic organic chemistry of the solar system. This review provides a summary of the techniques commonly used for analyzing amino acids, amines, monocarboxylic acids, aldehydes, and ketones in extraterrestrial samples. Here, we discuss possible effects of various experimental factors (e.g., extraction protocols, derivatization methods, and chromatographic techniques) in order to highlight potential influences on the results obtained from different methodologies. This detailed summary and assessment of current techniques is intended to serve as a basic guide for selecting methodologies for soluble organic analyses and to emphasize some key considerations for future method development.

8.
Rapid Commun Mass Spectrom ; 30(18): 2043-51, 2016 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-27467333

RESUMEN

RATIONALE: Spark discharge experiments, like those performed by Stanley Miller in the 1950s, generate complex, analytically challenging mixtures that contain biopolymer building blocks. Recently, α-amino acids and α-hydroxy acids (AHAs) were subjected to environmental cycling to form simple depsipeptides (peptides with both amide and ester linkages). The synthesis of AHAs under possible primordial environments must be examined to better understand this chemistry. METHODS: We report a direct, quantitative method for AHAs using ultrahigh-performance liquid chromatography and triple quadrupole mass spectrometry. Hexylamine ion-pairing chromatography and selected reaction monitoring detection were combined for the rapid analysis of ten AHAs in a single run. Additionally, prebiotic simulation experiments, including the first-ever reproduction of Miller's 1958 cyanamide spark discharge experiment, were performed to evaluate AHA synthesis over a wide range of possible primitive terrestrial environments. RESULTS: The quantitating transition for each of the AHAs targeted in this study produced a limit of detection in the nanomolar concentration range. For most species, a linear response over a range spanning two orders of magnitude was found. The AHAs glycolic acid, lactic acid, malic acid, and α-hydroxyglutaric acid were detected in electric discharge experiments in the low micromolar concentration range. CONCLUSIONS: The results of this work suggest that the most abundant building blocks available for prebiotic depsipeptide synthesis would have been glycolic, lactic, malic, and α-hydroxyglutaric acids, and their corresponding amino acids, glycine, alanine, and aspartic and glutamic acids. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Hidroxiácidos/análisis , Prebióticos/análisis , Espectrometría de Masas en Tándem/métodos
9.
Angew Chem Int Ed Engl ; 53(31): 8132-6, 2014 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-24966137

RESUMEN

Following his seminal work in 1953, Stanley Miller conducted an experiment in 1958 to study the polymerization of amino acids under simulated early Earth conditions. In the experiment, Miller sparked a gas mixture of CH4, NH3, and H2O, while intermittently adding the plausible prebiotic condensing reagent cyanamide. For unknown reasons, an analysis of the samples was not reported. We analyzed the archived samples for amino acids, dipeptides, and diketopiperazines by liquid chromatography, ion mobility spectrometry, and mass spectrometry. A dozen amino acids, 10 glycine-containing dipeptides, and 3 glycine-containing diketopiperazines were detected. Miller's experiment was repeated and similar polymerization products were observed. Aqueous heating experiments indicate that Strecker synthesis intermediates play a key role in facilitating polymerization. These results highlight the potential importance of condensing reagents in generating diversity within the prebiotic chemical inventory.


Asunto(s)
Aminoácidos/síntesis química , Planeta Tierra , Péptidos/síntesis química
10.
J Vis Exp ; (83): e51039, 2014 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-24473135

RESUMEN

In 1953, Stanley Miller reported the production of biomolecules from simple gaseous starting materials, using an apparatus constructed to simulate the primordial Earth's atmosphere-ocean system. Miller introduced 200 ml of water, 100 mmHg of H2, 200 mmHg of CH4, and 200 mmHg of NH3 into the apparatus, then subjected this mixture, under reflux, to an electric discharge for a week, while the water was simultaneously heated. The purpose of this manuscript is to provide the reader with a general experimental protocol that can be used to conduct a Miller-Urey type spark discharge experiment, using a simplified 3 L reaction flask. Since the experiment involves exposing inflammable gases to a high voltage electric discharge, it is worth highlighting important steps that reduce the risk of explosion. The general procedures described in this work can be extrapolated to design and conduct a wide variety of electric discharge experiments simulating primitive planetary environments.


Asunto(s)
Aminoácidos/síntesis química , Amoníaco/química , Evolución Química , Metano/química , Origen de la Vida , Técnicas Electroquímicas , Cromatografía de Gases y Espectrometría de Masas , Nitrógeno/química
11.
Orig Life Evol Biosph ; 41(6): 569-74, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22139514

RESUMEN

Stanley Miller's 1958 H(2)S-containing experiment, which included a simulated prebiotic atmosphere of methane (CH(4)), ammonia (NH(3)), carbon dioxide (CO(2)), and hydrogen sulfide (H(2)S) produced several alkyl amino acids, including the α-, ß-, and γ-isomers of aminobutyric acid (ABA) in greater relative yields than had previously been reported from his spark discharge experiments. In the presence of H(2)S, aspartic and glutamic acids could yield alkyl amino acids via the formation of thioimide intermediates. Radical chemistry initiated by passing H(2)S through a spark discharge could have also enhanced alkyl amino acid synthesis by generating alkyl radicals that can help form the aldehyde and ketone precursors to these amino acids. We propose mechanisms that may have influenced the synthesis of certain amino acids in localized environments rich in H(2)S and lightning discharges, similar to conditions near volcanic systems on the early Earth, thus contributing to the prebiotic chemical inventory of the primordial Earth.


Asunto(s)
Aminoácidos/química , Atmósfera/química , Evolución Química , Sulfuro de Hidrógeno/química , Cromatografía Liquida , Planeta Tierra , Evolución Planetaria , Fluorescencia , Relámpago , Espectrometría de Masas , Oxidación-Reducción , Erupciones Volcánicas
12.
Proc Natl Acad Sci U S A ; 108(14): 5526-31, 2011 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-21422282

RESUMEN

Archived samples from a previously unreported 1958 Stanley Miller electric discharge experiment containing hydrogen sulfide (H(2)S) were recently discovered and analyzed using high-performance liquid chromatography and time-of-flight mass spectrometry. We report here the detection and quantification of primary amine-containing compounds in the original sample residues, which were produced via spark discharge using a gaseous mixture of H(2)S, CH(4), NH(3), and CO(2). A total of 23 amino acids and 4 amines, including 7 organosulfur compounds, were detected in these samples. The major amino acids with chiral centers are racemic within the accuracy of the measurements, indicating that they are not contaminants introduced during sample storage. This experiment marks the first synthesis of sulfur amino acids from spark discharge experiments designed to imitate primordial environments. The relative yield of some amino acids, in particular the isomers of aminobutyric acid, are the highest ever found in a spark discharge experiment. The simulated primordial conditions used by Miller may serve as a model for early volcanic plume chemistry and provide insight to the possible roles such plumes may have played in abiotic organic synthesis. Additionally, the overall abundances of the synthesized amino acids in the presence of H(2)S are very similar to the abundances found in some carbonaceous meteorites, suggesting that H(2)S may have played an important role in prebiotic reactions in early solar system environments.


Asunto(s)
Aminas/síntesis química , Aminoácidos/síntesis química , Evolución Química , Sulfuro de Hidrógeno/química , Origen de la Vida , Amoníaco , Dióxido de Carbono , Cromatografía Líquida de Alta Presión , Espectrometría de Masas , Metano
13.
Orig Life Evol Biosph ; 41(3): 201-12, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21063908

RESUMEN

Original extracts from an unpublished 1958 experiment conducted by the late Stanley L. Miller were recently found and analyzed using modern state-of-the-art analytical methods. The extracts were produced by the action of an electric discharge on a mixture of methane (CH(4)), hydrogen sulfide (H(2)S), ammonia (NH(3)), and carbon dioxide (CO(2)). Racemic methionine was formed in significant yields, together with other sulfur-bearing organic compounds. The formation of methionine and other compounds from a model prebiotic atmosphere that contained H(2)S suggests that this type of synthesis is robust under reducing conditions, which may have existed either in the global primitive atmosphere or in localized volcanic environments on the early Earth. The presence of a wide array of sulfur-containing organic compounds produced by the decomposition of methionine and cysteine indicates that in addition to abiotic synthetic processes, degradation of organic compounds on the primordial Earth could have been important in diversifying the inventory of molecules of biochemical significance not readily formed from other abiotic reactions, or derived from extraterrestrial delivery.


Asunto(s)
Metionina/síntesis química , Compuestos de Azufre/síntesis química , Amoníaco/química , Dióxido de Carbono/química , Cromatografía Líquida de Alta Presión , Cisteamina/síntesis química , Cisteína/análogos & derivados , Cisteína/síntesis química , Electricidad , Historia del Siglo XX , Homocisteína/análogos & derivados , Homocisteína/síntesis química , Sulfuro de Hidrógeno/química , Metano/química , Metionina/análogos & derivados , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...