Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(9): 6072-6083, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38400985

RESUMEN

Diamine-appended Mg2(dobpdc) (dobpdc4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) metal-organic frameworks are promising candidates for carbon capture that exhibit exceptional selectivities and high capacities for CO2. To date, CO2 uptake in these materials has been shown to occur predominantly via a chemisorption mechanism involving CO2 insertion at the amine-appended metal sites, a mechanism that limits the capacity of the material to ∼1 equiv of CO2 per diamine. Herein, we report a new framework, pip2-Mg2(dobpdc) (pip2 = 1-(2-aminoethyl)piperidine), that exhibits two-step CO2 uptake and achieves an unusually high CO2 capacity approaching 1.5 CO2 per diamine at saturation. Analysis of variable-pressure CO2 uptake in the material using solid-state nuclear magnetic resonance (NMR) spectroscopy and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) reveals that pip2-Mg2(dobpdc) captures CO2 via an unprecedented mechanism involving the initial insertion of CO2 to form ammonium carbamate chains at half of the sites in the material, followed by tandem cooperative chemisorption and physisorption. Powder X-ray diffraction analysis, supported by van der Waals-corrected density functional theory, reveals that physisorbed CO2 occupies a pocket formed by adjacent ammonium carbamate chains and the linker. Based on breakthrough and extended cycling experiments, pip2-Mg2(dobpdc) exhibits exceptional performance for CO2 capture under conditions relevant to the separation of CO2 from landfill gas. More broadly, these results highlight new opportunities for the fundamental design of diamine-Mg2(dobpdc) materials with even higher capacities than those predicted based on CO2 chemisorption alone.

2.
J Am Chem Soc ; 146(5): 3160-3170, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38276891

RESUMEN

High or enriched-purity O2 is used in numerous industries and is predominantly produced from the cryogenic distillation of air, an extremely capital- and energy-intensive process. There is significant interest in the development of new approaches for O2-selective air separations, including the use of metal-organic frameworks featuring coordinatively unsaturated metal sites that can selectively bind O2 over N2 via electron transfer. However, most of these materials exhibit appreciable and/or reversible O2 uptake only at low temperatures, and their open metal sites are also potential strong binding sites for the water present in air. Here, we study the framework CuI-MFU-4l (CuxZn5-xCl4-x(btdd)3; H2btdd = bis(1H-1,2,3-triazolo[4,5-b],[4',5'-i])dibenzo[1,4]dioxin), which binds O2 reversibly at ambient temperature. We develop an optimized synthesis for the material to access a high density of trigonal pyramidal CuI sites, and we show that this material reversibly captures O2 from air at 25 °C, even in the presence of water. When exposed to air up to 100% relative humidity, CuI-MFU-4l retains a constant O2 capacity over the course of repeated cycling under dynamic breakthrough conditions. While this material simultaneously adsorbs N2, differences in O2 and N2 desorption kinetics allow for the isolation of high-purity O2 (>99%) under relatively mild regeneration conditions. Spectroscopic, magnetic, and computational analyses reveal that O2 binds to the copper(I) sites to form copper(II)-superoxide moieties that exhibit temperature-dependent side-on and end-on binding modes. Overall, these results suggest that CuI-MFU-4l is a promising material for the separation of O2 from ambient air, even without dehumidification.

3.
J Am Chem Soc ; 145(31): 17151-17163, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37493594

RESUMEN

Diamine-appended Mg2(dobpdc) (dobpdc4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) metal-organic frameworks have emerged as promising candidates for carbon capture owing to their exceptional CO2 selectivities, high separation capacities, and step-shaped adsorption profiles, which arise from a unique cooperative adsorption mechanism resulting in the formation of ammonium carbamate chains. Materials appended with primary,secondary-diamines featuring bulky substituents, in particular, exhibit excellent stabilities and CO2 adsorption properties. However, these frameworks display double-step adsorption behavior arising from steric repulsion between ammonium carbamates, which ultimately results in increased regeneration energies. Herein, we report frameworks of the type diamine-Mg2(olz) (olz4- = (E)-5,5'-(diazene-1,2-diyl)bis(2-oxidobenzoate)) that feature diverse diamines with bulky substituents and display desirable single-step CO2 adsorption across a wide range of pressures and temperatures. Analysis of CO2 adsorption data reveals that the basicity of the pore-dwelling amine─in addition to its steric bulk─is an important factor influencing adsorption step pressure; furthermore, the amine steric bulk is found to be inversely correlated with the degree of cooperativity in CO2 uptake. One material, ee-2-Mg2(olz) (ee-2 = N,N-diethylethylenediamine), adsorbs >90% of the CO2 from a simulated coal flue stream and exhibits exceptional thermal and oxidative stability over the course of extensive adsorption/desorption cycling, placing it among top-performing adsorbents to date for CO2 capture from a coal flue gas. Spectroscopic characterization and van der Waals-corrected density functional theory calculations indicate that diamine-Mg2(olz) materials capture CO2 via the formation of ammonium carbamate chains. These results point more broadly to the opportunity for fundamentally advancing materials in this class through judicious design.

4.
J Am Chem Soc ; 144(43): 19849-19860, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36265017

RESUMEN

Diamine-appended Mg2(dobpdc) (dobpdc4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) metal-organic frameworks are a promising class of CO2 adsorbents, although their stability to SO2─a trace component of industrially relevant exhaust streams─remains largely untested. Here, we investigate the impact of SO2 on the stability and CO2 capture performance of dmpn-Mg2(dobpdc) (dmpn = 2,2-dimethyl-1,3-propanediamine), a candidate material for carbon capture from coal flue gas. Using SO2 breakthrough experiments and CO2 isobar measurements, we find that the material retains 91% of its CO2 capacity after saturation with a wet simulated flue gas containing representative levels of CO2 and SO2, highlighting the robustness of this framework to SO2 under realistic CO2 capture conditions. Initial SO2 cycling experiments suggest dmpn-Mg2(dobpdc) may achieve a stable operating capacity in the presence of SO2 after initial passivation. Evaluation of several other diamine-Mg2(dobpdc) variants reveals that those with primary,primary (1°,1°) diamines, including dmpn-Mg2(dobpdc), are more robust to humid SO2 than those featuring primary,secondary (1°,2°) or primary,tertiary (1°,3°) diamines. Based on the solid-state 15N NMR spectra and density functional theory calculations, we find that under humid conditions, SO2 reacts with the metal-bound primary amine in 1°,2° and 1°,3° diamine-appended Mg2(dobpdc) to form a metal-bound bisulfite species that is charge balanced by a primary ammonium cation, thereby facilitating material degradation. In contrast, humid SO2 reacts with the free end of 1°,1° diamines to form ammonium bisulfite, leaving the metal-diamine bond intact. This structure-property relationship can be used to guide further optimization of these materials for CO2 capture applications.


Asunto(s)
Diaminas , Dióxido de Azufre , Dióxido de Carbono , Aminas , Carbono
5.
J Am Chem Soc ; 143(37): 15258-15270, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34491725

RESUMEN

Carbon capture at fossil fuel-fired power plants is a critical strategy to mitigate anthropogenic contributions to global warming, but widespread deployment of this technology is hindered by a lack of energy-efficient materials that can be optimized for CO2 capture from a specific flue gas. As a result of their tunable, step-shaped CO2 adsorption profiles, diamine-functionalized metal-organic frameworks (MOFs) of the form diamine-Mg2(dobpdc) (dobpdc4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) are among the most promising materials for carbon capture applications. Here, we present a detailed investigation of dmen-Mg2(dobpdc) (dmen = 1,2-diamino-2-methylpropane), one of only two MOFs with an adsorption step near the optimal pressure for CO2 capture from coal flue gas. While prior characterization suggested that this material only adsorbs CO2 to half capacity (0.5 CO2 per diamine) at 1 bar, we show that the half-capacity state is actually a metastable intermediate. Under appropriate conditions, the MOF adsorbs CO2 to full capacity, but conversion from the half-capacity structure happens on a very slow time scale, rendering it inaccessible in traditional adsorption measurements. Data from solid-state magic angle spinning nuclear magnetic resonance spectroscopy, coupled with van der Waals-corrected density functional theory, indicate that ammonium carbamate chains formed at half capacity and full capacity adopt opposing configurations, and the need to convert between these states likely dictates the sluggish post-half-capacity uptake. By use of the more symmetric parent framework Mg2(pc-dobpdc) (pc-dobpdc4- = 3,3'-dioxidobiphenyl-4,4'-dicarboxylate), the metastable trap can be avoided and the full CO2 capacity of dmen-Mg2(pc-dobpdc) accessed under conditions relevant for carbon capture from coal-fired power plants.


Asunto(s)
Contaminantes Atmosféricos/química , Dióxido de Carbono/química , Diaminas/química , Estructuras Metalorgánicas/química , Adsorción , Cambio Climático , Simulación por Computador , Teoría Funcional de la Densidad , Modelos Moleculares
6.
J Am Chem Soc ; 141(45): 18325-18333, 2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31626542

RESUMEN

Most C4 hydrocarbons are obtained as byproducts of ethylene production or oil refining, and complex and energy-intensive separation schemes are required for their isolation. Substantial industrial and academic effort has been expended to develop more cost-effective adsorbent- or membrane-based approaches to purify commodity chemicals such as 1,3-butadiene, isobutene, and 1-butene, but the very similar physical properties of these C4 hydrocarbons make this a challenging task. Here, we examine the adsorption behavior of 1-butene, cis-2-butene, and trans-2-butene in the metal-organic frameworks M2(dobdc) (M = Mn, Fe, Co, Ni; dobdc4- = 2,5-dioxidobenzene-1,4-dicarboxylate) and M2(m-dobdc) (m-dobdc4- = 4,6-dioxidobenzene-1,3-dicarboxylate), which all contain a high density of coordinatively unsaturated M2+ sites. We find that both Co2(m-dobdc) and Ni2(m-dobdc) are able to separate 1-butene from the 2-butene isomers, a critical industrial process that relies largely on energetically demanding cryogenic distillation. The origin of 1-butene selectivity is traced to the high charge density retained by the M2+ metal centers exposed within the M2(m-dobdc) structures, which results in a reversal of the cis-2-butene selectivity typically observed at framework open metal sites. Selectivity for 1-butene adsorption under multicomponent conditions is demonstrated for Ni2(m-dobdc) in both the gaseous and the liquid phases via breakthrough and batch adsorption experiments.


Asunto(s)
Alquenos/aislamiento & purificación , Estructuras Metalorgánicas/química , Adsorción , Alquenos/química , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA