Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rheumatology (Oxford) ; 62(8): 2864-2871, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36478205

RESUMEN

OBJECTIVES: The B-cell depleting biologic, rituximab, is used to treat refractory autoimmune myositis. However, the beneficial effects of rituximab appear to outweigh the known contribution of B cells in myositis. We aimed to elucidate how myositis patients respond differently to rituximab and possible alternative mechanisms of action. METHODS: Here we have: (i) comprehensively investigated concurrent mRNA and microRNA expression in muscle biopsies taken at baseline and 16 weeks post treatment in 10 patients who were part of the rituximab in myositis (RIM) trial; and (ii) investigated the beneficial effect of rituximab on myositis muscle cells. RESULTS: Our analyses identified an increased number of changes in gene expression in biopsies from patients who had a clinical response to rituximab (n = 5) compared with non-responders (n = 5). The two groups had completely different changes in microRNA and mRNA expression following rituximab therapy, with the exception of one mRNA, BHMT2. Networks of mRNA and microRNA with opposite direction of expression changes highlighted ESR1 as upregulated in responders. We confirmed ESR1 upregulation upon rituximab treatment of immortalized myotubes and primary human dermatomyositis muscle cells in vitro, demonstrating a direct effect of rituximab on muscle cells. Notably, despite showing a response to rituximab, human dermatomyositis primary muscle cells did not express the rituximab target, CD20. However, these cells expressed a possible alternative target of rituximab, sphingomyelinase-like phosphodiesterase 3 b (SMPDL3B). CONCLUSION: In addition to B-cell depletion, rituximab may be beneficial in myositis due to increased ESR1 signalling mediated by rituximab binding to SMPDL3B on skeletal muscle cells.


Asunto(s)
Dermatomiositis , MicroARNs , Miositis , Humanos , Rituximab/farmacología , Rituximab/uso terapéutico , Esfingomielina Fosfodiesterasa/uso terapéutico , Dermatomiositis/tratamiento farmacológico , Receptor alfa de Estrógeno , Miositis/tratamiento farmacológico , Hidrolasas Diéster Fosfóricas
2.
J Neuromuscul Dis ; 8(s2): S325-S340, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34569971

RESUMEN

BACKGROUND: AAV-based gene therapy is an attractive approach to treat Duchenne muscular dystrophy (DMD) patients. Although the long-term consequences of a gene therapy approach for DMD are unknown, there is evidence in both DMD patients and animal models that dystrophin replacement by gene therapy leads to an anti-dystrophin immune response that is likely to limit the long-term use of these therapeutic strategies. OBJECTIVE: Our objective is to test whether the anti-dystrophin immune response is affected by immunomodulatory drugs in mdx mice after rAAV gene therapy. METHODS: mdx mice were treated with rAAV microdystrophin alone or in combination with immunomodulatory drugs. Dystrophin expression in skeletal muscle was assessed by mass spectrometry. Immune responses were assessed by immunophenotyping, western blot for anti-dystrophin antibodies and flow cytometry assays for antigen-specific T-cell cytokine expression. The impact on muscle was measured by grip strength assessment, in vivo torque, optical imaging for inflammation and H&E staining of sections to assess muscle damage. RESULTS: We found that AAV-9-microdystrophin gene therapy induced expression of microdystrophin, anti-dystrophin antibodies, and T-cell cytokine responses. Immunomodulatory treatments, rituximab and VBP6 completely abrogated the anti-dystrophin antibody response. Prednisolone, CTLA4-Ig, and eplerenone showed variable efficacy in blocking the anti-dystrophin immune response. In contrast, none of the drugs completely abrogated the antigen specific IFN-γ response. AAV-microdystrophin treatment significantly reduced inflammation in both forelimbs and hindlimbs, and the addition of prednisolone and VBP6 further reduced muscle inflammation. Treatment with immunomodulatory drugs, except eplerenone, enhanced the beneficial effects of AAV-microdystrophin therapy in terms of force generation. CONCLUSIONS: Our data suggest that AAV-microdystrophin treatment results in anti-dystrophin antibody and T-cell responses, and immunomodulatory treatments have variable efficacy on these responses.


Asunto(s)
Dependovirus/metabolismo , Distrofina/inmunología , Terapia Genética/métodos , Agentes Inmunomoduladores/uso terapéutico , Distrofia Muscular de Duchenne/terapia , Animales , Expresión Génica , Vectores Genéticos , Inmunidad , Ratones , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular Animal/metabolismo
3.
BMC Rheumatol ; 4: 25, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32529172

RESUMEN

BACKGROUND: The idiopathic inflammatory myopathies (IIMs) are heterogeneous autoimmune conditions of skeletal muscle inflammation and weakness. MicroRNAs (miRNAs) are short, non-coding RNA which regulate gene expression of target mRNAs. The aim of this study was to profile miRNA and mRNA in IIM and identify miRNA-mRNA relationships which may be relevant to disease. METHODS: mRNA and miRNA in whole blood samples from 7 polymyositis (PM), 7 dermatomyositis (DM), 5 inclusion body myositis and 5 non-myositis controls was profiled using next generation RNA sequencing. Gene ontology and pathway analyses were performed using GOseq and Ingenuity Pathway Analysis. Dysregulation of miRNAs and opposite dysregulation of predicted target mRNAs in IIM subgroups was validated using RTqPCR and investigated by transfecting human skeletal muscle cells with miRNA mimic. RESULTS: Analysis of differentially expressed genes showed that interferon signalling, and anti-viral response pathways were upregulated in PM and DM compared to controls. An anti-Jo1 autoantibody positive subset of PM and DM (n = 5) had more significant upregulation and predicted activation of interferon signalling and highlighted T-helper (Th1 and Th2) cell pathways. In miRNA profiling miR-96-5p was significantly upregulated in PM, DM and the anti-Jo1 positive subset. RTqPCR replicated miR-96-5p upregulation and predicted mRNA target (ADK, CD28 and SLC4A10) downregulation. Transfection of a human skeletal muscle cell line with miR-96-5p mimic resulted in significant downregulation of ADK. CONCLUSION: MiRNA and mRNA profiling identified dysregulation of interferon signalling, anti-viral response and T-helper cell pathways, and indicates a possible role for miR-96-5p regulation of ADK in pathogenesis of IIM.

4.
Arthritis Res Ther ; 20(1): 117, 2018 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-29884237

RESUMEN

BACKGROUND: The prevalence of dermatomyositis (DM) versus DM and polymyositis (PM) combined has been shown to be negatively associated with latitude. This observation has been attributed to increasing exposure to ultraviolet (UV) light towards the equator. In this study, we investigated whether differing genetic background in populations could contribute to this distribution of DM. METHODS: Case data derived from the MYOGEN (Myositis Genetics Consortium) Immunochip study (n = 1769) were used to model the association of DM prevalence and DM-specific autoantibodies with latitude. Control data (n = 9911) were used to model the relationship of human leucocyte antigen (HLA) associated with DM autoantibodies and DM or PM single-nucleotide polymorphisms (suggestive significance in the Immunochip project, P < 2.25 × 10- 5) in healthy control subjects with latitude. All variables were analysed against latitude using ordered logistic regression, adjusted for sex. RESULTS: The prevalence of DM, as a proportion of DM and PM combined, and the presence of anti-transcription intermediary factor 1 (anti-TIF1-γ) autoantibodies were both significantly negatively associated with latitude (OR 0.96, 95% CI 0.95-0.98, P < 0.001; and OR 0.95, 95% CI 0.92-0.99, P = 0.004, respectively). HLA alleles significantly associated with anti-Mi-2 and anti-TIF1-γ autoantibodies also were strongly negatively associated with latitude (OR 0.97, 95% CI 0.96-0.98, P < 0.001 and OR 0.98, 95% CI 0.97-0.99, P < 0.001, respectively). The frequency of five PM- or DM-associated SNPs showed a significant association with latitude (P < 0.05), and the direction of four of these associations was consistent with the latitude associations of the clinical phenotypes. CONCLUSIONS: These results lend some support to the hypothesis that genetic background, in addition to UV exposure, may contribute to the distribution of DM.


Asunto(s)
Autoanticuerpos/genética , Dermatomiositis/genética , Antecedentes Genéticos , Luz Solar , Factores de Transcripción/genética , Adulto , Autoanticuerpos/sangre , Dermatomiositis/sangre , Dermatomiositis/diagnóstico , Femenino , Humanos , Masculino , Polimorfismo de Nucleótido Simple/genética , Polimiositis/sangre , Polimiositis/diagnóstico , Polimiositis/genética , Prevalencia , Factores de Transcripción/sangre
5.
Arthritis Res Ther ; 18(1): 156, 2016 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-27388770

RESUMEN

BACKGROUND: The idiopathic inflammatory myopathies (IIM) are autoimmune diseases characterised by acquired proximal muscle weakness, inflammatory cell infiltrates in muscle and myositis-specific/associated autoantibodies. It is unclear which pathways are involved in IIM, and the functional relationship between autoantibody targets has not been systematically explored. Protein-protein interaction and pathway analyses were conducted to identify pathways relevant to disease, using autoantibody targets and gene products of IIM-associated single nucleotide polymorphism (SNP) loci. METHODS: Protein-protein interactions were analysed using Disease Association Protein-Protein Link Evaluator (DAPPLE). Gene ontology and pathway analyses were conducted using Database for Annotation Visualisation and Integrated Discovery (DAVID) and Gene Relationships Across Implicated Loci (GRAIL). Analyses were undertaken including the targets of published autoantibodies, significant and suggestive SNPs from an IIM association study and autoantibody targets plus SNPs combined. RESULTS: The protein-protein interaction networks formed by autoantibody targets and associated SNPs showed significant direct and/or indirect connectivity (p < 0.05). Autoantibody targets plus associated SNPs combined resulted in more significant indirect and common interactor connectivity, suggesting autoantibody targets and proteins encoded by IIM-associated loci may be involved in common pathways. Tumour necrosis factor receptor-associated factor 6 (TRAF6) was identified as a hub protein, and UBE3B, HSPA1A, HSPA1B and PSMD3 also were identified as genes with significant connectivity. Pathway analysis identified that autoantibody targets and associated SNP regions are significantly interconnected (p < 0.01), and confirmed autoantibody target involvement in translational and post-translational processes. 'Ubiquitin' was the only keyword strongly linking significant genes across regions in all three GRAIL analyses of autoantibody targets and IIM-associated SNPs. CONCLUSIONS: Autoantibody targets and IIM-associated loci show significant connectivity and inter-relatedness, and identify several key genes and pathways in IIM pathogenesis, possibly mediated via the ubiquitination pathway.


Asunto(s)
Autoanticuerpos/inmunología , Autoantígenos/inmunología , Miositis/inmunología , Mapas de Interacción de Proteínas , Autoantígenos/genética , Humanos , Miositis/genética , Polimorfismo de Nucleótido Simple , Mapeo de Interacción de Proteínas
6.
Curr Opin Rheumatol ; 27(6): 608-15, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26398013

RESUMEN

PURPOSE OF REVIEW: The idiopathic inflammatory myopathies (IIMs) are a group of rare autoimmune disorders characterized by skeletal muscle weakness and inflammation. MicroRNAs (miRNAs) regulate a wide range of developmental and physiological cellular processes. New approaches to investigating the mechanisms involved in IIM, such as investigating the role of miRNAs, are vital for the development of novel therapeutics and/or better diagnostic tools. RECENT FINDINGS: Identification of dysregulated miRNAs has led to a greater understanding of inflammation, muscle weakness/wasting and extra-muscular organ involvement in IIM. Up-regulation of immune-related miRNAs in muscle, for example, miR-155 and miR-146, is associated with autoimmunity, whereas down-regulation of myogenic miRNAs, including miR-1 and miR-206, is associated with inhibition of muscle regeneration. Disease mechanisms have been explored by altering in-vitro conditions and monitoring miRNA levels of interest, or, alternatively, changing miRNA levels and monitoring possible targets. For example, higher levels of cytokines appear to inhibit myogenic miRNAs in muscle and artificially reducing levels of miR-223 increases protein kinase C-epsilon (PKCε) levels in keratinocytes. SUMMARY: The exciting expansion of the miRNA field adds to our understanding of IIM pathogenesis and may provide future clinical potential either as diagnostic tools or as therapeutics via use of anti-miRNAs or synthetic miRNAs.


Asunto(s)
MicroARNs/inmunología , Miositis/inmunología , Autoinmunidad , Biomarcadores/sangre , Humanos , MicroARNs/sangre , Debilidad Muscular/sangre , Debilidad Muscular/inmunología , Atrofia Muscular/sangre , Atrofia Muscular/inmunología , Miositis/sangre , Miositis/diagnóstico , Miositis/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...