Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Magn Reson Med ; 92(2): 469-495, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38594906

RESUMEN

Accurate assessment of cerebral perfusion is vital for understanding the hemodynamic processes involved in various neurological disorders and guiding clinical decision-making. This guidelines article provides a comprehensive overview of quantitative perfusion imaging of the brain using multi-timepoint arterial spin labeling (ASL), along with recommendations for its acquisition and quantification. A major benefit of acquiring ASL data with multiple label durations and/or post-labeling delays (PLDs) is being able to account for the effect of variable arterial transit time (ATT) on quantitative perfusion values and additionally visualize the spatial pattern of ATT itself, providing valuable clinical insights. Although multi-timepoint data can be acquired in the same scan time as single-PLD data with comparable perfusion measurement precision, its acquisition and postprocessing presents challenges beyond single-PLD ASL, impeding widespread adoption. Building upon the 2015 ASL consensus article, this work highlights the protocol distinctions specific to multi-timepoint ASL and provides robust recommendations for acquiring high-quality data. Additionally, we propose an extended quantification model based on the 2015 consensus model and discuss relevant postprocessing options to enhance the analysis of multi-timepoint ASL data. Furthermore, we review the potential clinical applications where multi-timepoint ASL is expected to offer significant benefits. This article is part of a series published by the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group, aiming to guide and inspire the advancement and utilization of ASL beyond the scope of the 2015 consensus article.


Asunto(s)
Encéfalo , Circulación Cerebrovascular , Marcadores de Spin , Humanos , Encéfalo/diagnóstico por imagen , Encéfalo/irrigación sanguínea , Circulación Cerebrovascular/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Angiografía por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/métodos , Imagen de Perfusión
2.
Mov Disord ; 38(12): 2269-2281, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37964373

RESUMEN

BACKGROUND: Increasing evidence points to a pathophysiological role for the cerebellum in Parkinson's disease (PD). However, regional cerebellar changes associated with motor and non-motor functioning remain to be elucidated. OBJECTIVE: To quantify cross-sectional regional cerebellar lobule volumes using three dimensional T1-weighted anatomical brain magnetic resonance imaging from the global ENIGMA-PD working group. METHODS: Cerebellar parcellation was performed using a deep learning-based approach from 2487 people with PD and 1212 age and sex-matched controls across 22 sites. Linear mixed effects models compared total and regional cerebellar volume in people with PD at each Hoehn and Yahr (HY) disease stage, to an age- and sex- matched control group. Associations with motor symptom severity and Montreal Cognitive Assessment scores were investigated. RESULTS: Overall, people with PD had a regionally smaller posterior lobe (dmax = -0.15). HY stage-specific analyses revealed a larger anterior lobule V bilaterally (dmax = 0.28) in people with PD in HY stage 1 compared to controls. In contrast, smaller bilateral lobule VII volume in the posterior lobe was observed in HY stages 3, 4, and 5 (dmax = -0.76), which was incrementally lower with higher disease stage. Within PD, cognitively impaired individuals had lower total cerebellar volume compared to cognitively normal individuals (d = -0.17). CONCLUSIONS: We provide evidence of a dissociation between anterior "motor" lobe and posterior "non-motor" lobe cerebellar regions in PD. Whereas less severe stages of the disease are associated with larger motor lobe regions, more severe stages of the disease are marked by smaller non-motor regions. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/complicaciones , Estudios Transversales , Imagen por Resonancia Magnética , Cerebelo , Encéfalo
3.
NMR Biomed ; 36(11): e5009, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37666494

RESUMEN

A technique for quantifying regional blood-brain barrier (BBB) water exchange rates using contrast-enhanced arterial spin labelling (CE-ASL) is presented and evaluated in simulations and in vivo. The two-compartment ASL model describes the water exchange rate from blood to tissue, k b , but to estimate k b in practice it is necessary to separate the intra- and extravascular signals. This is challenging in standard ASL data owing to the small difference in T 1 values. Here, a gadolinium-based contrast agent is used to increase this T 1 difference and enable the signal components to be disentangled. The optimal post-contrast blood T 1 ( T 1 , b post ) at 3 T was determined in a sensitivity analysis, and the accuracy and precision of the method quantified using Monte Carlo simulations. Proof-of-concept data were acquired in six healthy volunteers (five female, age range 24-46 years). The sensitivity analysis identified the optimal T 1 , b post at 3 T as 0.8 s. Simulations showed that k b could be estimated in individual cortical regions with a relative error ϵ < 1 % and coefficient of variation CoV = 30 %; however, a high dependence on blood T 1 was also observed. In volunteer data, mean parameter values in grey matter were: arterial transit time t A = 1 . 15 ± 0 . 49 s, cerebral blood flow f = 58 . 0 ± 14 . 3 mL blood/min/100 mL tissue and water exchange rate k b = 2 . 32 ± 2 . 49 s-1 . CE-ASL can provide regional BBB water exchange rate estimates; however, the clinical utility of the technique is dependent on the achievable accuracy of measured T 1 values.


Asunto(s)
Barrera Hematoencefálica , Encéfalo , Humanos , Femenino , Adulto Joven , Adulto , Persona de Mediana Edad , Barrera Hematoencefálica/diagnóstico por imagen , Encéfalo/fisiología , Agua , Imagen por Resonancia Magnética/métodos , Sustancia Gris , Marcadores de Spin , Circulación Cerebrovascular/fisiología
4.
Fluids Barriers CNS ; 20(1): 25, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37013549

RESUMEN

Blood-brain barrier (BBB) dysfunction occurs in many brain diseases, and there is increasing evidence to suggest that it is an early process in dementia which may be exacerbated by peripheral infection. Filter-exchange imaging (FEXI) is an MRI technique for measuring trans-membrane water exchange. FEXI data is typically analysed using the apparent exchange rate (AXR) model, yielding estimates of the AXR. Crusher gradients are commonly used to remove unwanted coherence pathways arising from longitudinal storage pulses during the mixing period. We first demonstrate that when using thin slices, as is needed for imaging the rodent brain, crusher gradients result in underestimation of the AXR. To address this, we propose an extended crusher-compensated exchange rate (CCXR) model to account for diffusion-weighting introduced by the crusher gradients, which is able to recover ground truth values of BBB water exchange (kin) in simulated data. When applied to the rat brain, kin estimates obtained using the CCXR model were 3.10 s-1 and 3.49 s-1 compared to AXR estimates of 1.24 s-1 and 0.49 s-1 for slice thicknesses of 4.0 mm and 2.5 mm respectively. We then validated our approach using a clinically relevant Streptococcus pneumoniae lung infection. We observed a significant 70 ± 10% increase in BBB water exchange in rats during active infection (kin = 3.78 ± 0.42 s-1) compared to before infection (kin = 2.72 ± 0.30 s-1; p = 0.02). The BBB water exchange rate during infection was associated with higher levels of plasma von Willebrand factor (VWF), a marker of acute vascular inflammation. We also observed 42% higher expression of perivascular aquaporin-4 (AQP4) in infected animals compared to non-infected controls, while levels of tight junction proteins remain consistent between groups. In summary, we propose a modelling approach for FEXI data which removes the bias in estimated water-exchange rates associated with the use of crusher gradients. Using this approach, we demonstrate the impact of peripheral infection on BBB water exchange, which appears to be mediated by endothelial dysfunction and associated with an increase in perivascular AQP4.


Asunto(s)
Barrera Hematoencefálica , Agua , Ratas , Animales , Barrera Hematoencefálica/metabolismo , Agua/metabolismo , Encéfalo/metabolismo , Imagen por Resonancia Magnética/métodos , Acuaporina 4/metabolismo , Pulmón/metabolismo
5.
Magn Reson Med ; 90(1): 34-50, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36892973

RESUMEN

PURPOSE: To evaluate potential modeling paradigms and the impact of relaxation time effects on human blood-brain barrier (BBB) water exchange measurements using FEXI (BBB-FEXI), and to quantify the accuracy, precision, and repeatability of BBB-FEXI exchange rate estimates at 3 T $$ \mathrm{T} $$ . METHODS: Three modeling paradigms were evaluated: (i) the apparent exchange rate (AXR) model; (ii) a two-compartment model ( 2 CM $$ 2\mathrm{CM} $$ ) explicitly representing intra- and extravascular signal components, and (iii) a two-compartment model additionally accounting for finite compartmental T 1 $$ {\mathrm{T}}_1 $$ and T 2 $$ {\mathrm{T}}_2 $$ relaxation times ( 2 CM r $$ 2{\mathrm{CM}}_r $$ ). Each model had three free parameters. Simulations quantified biases introduced by the assumption of infinite relaxation times in the AXR and 2 CM $$ 2\mathrm{CM} $$ models, as well as the accuracy and precision of all three models. The scan-rescan repeatability of all paradigms was quantified for the first time in vivo in 10 healthy volunteers (age range 23-52 years; five female). RESULTS: The assumption of infinite relaxation times yielded exchange rate errors in simulations up to 42%/14% in the AXR/ 2 CM $$ 2\mathrm{CM} $$ models, respectively. Accuracy was highest in the compartmental models; precision was best in the AXR model. Scan-rescan repeatability in vivo was good for all models, with negligible bias and repeatability coefficients in grey matter of RC AXR = 0 . 43 $$ {\mathrm{RC}}_{\mathrm{AXR}}=0.43 $$ s - 1 $$ {\mathrm{s}}^{-1} $$ , RC 2 CM = 0 . 51 $$ {\mathrm{RC}}_{2\mathrm{CM}}=0.51 $$ s - 1 $$ {\mathrm{s}}^{-1} $$ , and RC 2 CM r = 0 . 61 $$ {\mathrm{RC}}_{2{\mathrm{CM}}_r}=0.61 $$ s - 1 $$ {\mathrm{s}}^{-1} $$ . CONCLUSION: Compartmental modelling of BBB-FEXI signals can provide accurate and repeatable measurements of BBB water exchange; however, relaxation time and partial volume effects may cause model-dependent biases.


Asunto(s)
Barrera Hematoencefálica , Agua , Humanos , Femenino , Adulto Joven , Adulto , Persona de Mediana Edad , Barrera Hematoencefálica/diagnóstico por imagen , Algoritmos , Simulación por Computador , Imagen por Resonancia Magnética
6.
J R Soc Interface ; 20(198): 20220406, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36651180

RESUMEN

Neurodegenerative diseases of the brain pose a major and increasing global health challenge, with only limited progress made in developing effective therapies over the last decade. Interdisciplinary research is improving understanding of these diseases and this article reviews such approaches, with particular emphasis on tools and techniques drawn from physics, chemistry, artificial intelligence and psychology.


Asunto(s)
Inteligencia Artificial , Enfermedades Neurodegenerativas , Humanos , Encéfalo
7.
Eur J Nucl Med Mol Imaging ; 50(4): 1051-1083, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36437425

RESUMEN

The blood-brain barrier (BBB) is the interface between the central nervous system and systemic circulation. It tightly regulates what enters and is removed from the brain parenchyma and is fundamental in maintaining brain homeostasis. Increasingly, the BBB is recognised as having a significant role in numerous neurological disorders, ranging from acute disorders (traumatic brain injury, stroke, seizures) to chronic neurodegeneration (Alzheimer's disease, vascular dementia, small vessel disease). Numerous approaches have been developed to study the BBB in vitro, in vivo, and ex vivo. The complex multicellular structure and effects of disease are difficult to recreate accurately in vitro, and functional aspects of the BBB cannot be easily studied ex vivo. As such, the value of in vivo methods to study the intact BBB cannot be overstated. This review discusses the structure and function of the BBB and how these are affected in diseases. It then discusses in depth several established and novel methods for imaging the BBB in vivo, with a focus on MRI, nuclear imaging, and high-resolution intravital fluorescence microscopy.


Asunto(s)
Enfermedad de Alzheimer , Accidente Cerebrovascular , Humanos , Barrera Hematoencefálica/diagnóstico por imagen , Encéfalo/irrigación sanguínea , Transporte Biológico
8.
Sci Rep ; 12(1): 18297, 2022 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-36316421

RESUMEN

Neurofibromatosis 1 (NF1) is a single-gene disorder associated with cognitive phenotypes common to neurodevelopmental conditions such as autism. GABAergic dysregulation underlies working memory impairments seen in NF1. This mechanistic experimental study investigates whether application of anodal transcranial direct current stimulation (atDCS) can modulate GABA and working memory in NF1. Thirty-one NF1 adolescents 11-18 years, were recruited to this single-blind sham-controlled cross-over randomized trial. AtDCS or sham stimulation was applied to the left Dorsolateral Prefrontal Cortex (DLPFC) and MR Spectroscopy was collected before and after intervention in the left DLPFC and occipital cortex. Task-related functional MRI was collected before, during, and after stimulation. Higher baseline GABA+ in the left DLPFC was associated with faster response times on baseline working memory measures. AtDCS was seen to significantly reduced GABA+ and increase brain activation in the left DLPFC as compared to sham stimulation. Task performance was worse in the aTDCS group during stimulation but no group differences in behavioural outcomes were observed at the end of stimulation. Although our study suggests aTDCS modulates inhibitory activity in the DLPFC, further work is needed to determine whether repeated sessions of atDCS and strategies such as alternating current stimulation offer a better therapeutic approach.


Asunto(s)
Neurofibromatosis 1 , Estimulación Transcraneal de Corriente Directa , Humanos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Ácido gamma-Aminobutírico , Neurofibromatosis 1/terapia , Corteza Prefrontal/fisiología , Método Simple Ciego , Estimulación Transcraneal de Corriente Directa/métodos
9.
Cereb Cortex Commun ; 3(2): tgac021, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35673329

RESUMEN

Introduction: Neurofibromatosis 1 (NF1) is a single-gene disorder associated with cognitive impairments, particularly with deficits in working memory. Prior research indicates that brain structure is affected in NF1, but it is unclear how these changes relate to aspects of cognition. Methods: 29 adolescents aged 11-17 years were compared to age and sex-matched controls. NF1 subjects were assessed using detailed multimodal measurements of working memory at baseline followed by a 3T MR scan. A voxel-based morphometry approach was used to estimate the total and regional gray matter(GM) volumetric differences between the NF1 and control groups. The working memory metrics were subjected to a principal component analysis (PCA) approach. Results: The NF1 groups showed increased gray matter volumes in the thalamus, corpus striatum, dorsal midbrain and cerebellum bilaterally in the NF1 group as compared to controls. Principal component analysis on the working memory metrics in the NF1 group yielded three independent factors reflecting high memory load, low memory load and auditory working memory. Correlation analyses revealed that increased volume of posterior cingulate cortex, a key component of the default mode network (DMN) was significantly associated with poorer performance on low working memory load tasks. Conclusion: These results are consistent with prior work showing larger subcortical brain volumes in the NF1 cohort. The strong association between posterior cingulate cortex volume and performance on low memory load conditions supports hypotheses of deficient DMN structural development, which in turn may contribute to the cognitive impairments in NF1.

10.
J Cereb Blood Flow Metab ; 42(11): 2066-2079, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35748031

RESUMEN

Chemical-exchange spin-lock (CESL) MRI can map regional uptake and utilisation of glucose in the brain at high spatial resolution (i.e sub 0.2 mm3 voxels). We propose two quantitative kinetic models to describe glucose-induced changes in tissue R1ρ and apply them to glucoCESL MRI data acquired in tumour-bearing and healthy rats. When assuming glucose transport is saturable, the maximal transport capacity (Tmax) measured in normal tissue was 3.2 ± 0.6 µmol/min/mL, the half saturation constant (Kt) was 8.8 ± 2.2 mM, the metabolic rate of glucose consumption (MRglc) was 0.21 ± 0.13 µmol/min/mL, and the cerebral blood volume (vb) was 0.006 ± 0.005 mL/mL. Values in tumour were: Tmax = 7.1 ± 2.7 µmol/min/mL, Kt = 14 ± 1.7 mM, MRglc = 0.22 ± 0.09 µmol/min/mL, vb = 0.030 ± 0.035 mL/mL. Tmax and Kt were significantly higher in tumour tissue than normal tissue (p = 0.006 and p = 0.011, respectively). When assuming glucose uptake also occurs via free diffusion, the free diffusion rate (kd) was 0.061 ± 0.017 mL/min/mL in normal tissue and 0.12 ± 0.042 mL/min/mL in tumour. These parameter estimates agree well with literature values obtained using other approaches (e.g. NMR spectroscopy).


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Animales , Transporte Biológico , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Glucosa/metabolismo , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética , Ratas
11.
Mov Disord ; 37(5): 1028-1039, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35165920

RESUMEN

BACKGROUND: Clinical diagnosis and monitoring of Parkinson's disease (PD) remain challenging because of the lack of an established biomarker. Neuromelanin-magnetic resonance imaging (NM-MRI) is an emerging biomarker of nigral depigmentation indexing the loss of melanized neurons but has unknown prospective diagnostic and tracking performance in multicenter settings. OBJECTIVES: The aim was to investigate the diagnostic accuracy of NM-MRI in early PD in a multiprotocol setting and to determine and compare serial NM-MRI changes in PD and controls. METHODS: In this longitudinal case-control 3 T MRI study, 148 patients and 97 controls were included from six UK clinical centers, of whom 140 underwent a second scan after 1.5 to 3 years. An automated template-based analysis was applied for subregional substantia nigra NM-MRI contrast and volume assessment. A point estimate of the period of prediagnostic depigmentation was computed. RESULTS: All NM metrics performed well to discriminate patients from controls, with receiver operating characteristic showing 85% accuracy for ventral NM contrast and 83% for volume. Generalizability using a priori volume cutoff was good (79% accuracy). Serial MRI demonstrated accelerated NM loss in patients compared to controls. Ventral NM contrast loss was point estimated to start 5 to 6 years before clinical diagnosis. Ventral nigral depigmentation was greater in the most affected side, more severe cases, and nigral NM volume change correlated with change in motor severity. CONCLUSIONS: We demonstrate that NM-MRI provides clinically useful diagnostic information in early PD across protocols, platforms, and sites. It provides methods and estimated depigmentation rates that highlight the potential to detect preclinical PD and track progression for biomarker-enabled clinical trials. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Biomarcadores , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética/métodos , Melaninas , Enfermedad de Parkinson/diagnóstico , Estudios Prospectivos , Sustancia Negra/diagnóstico por imagen , Sustancia Negra/patología
12.
Neurology ; 97(19): e1886-e1897, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34649879

RESUMEN

BACKGROUND AND OBJECTIVES: Cognitive impairment in multiple sclerosis (MS) is associated with functional connectivity abnormalities. While there have been calls to use functional connectivity measures as biomarkers, there remains to be a full understanding of why they are affected in MS. In this cross-sectional study, we tested the hypothesis that functional network regions may be susceptible to disease-related "wear and tear" and that this can be observable on co-occurring abnormalities on other magnetic resonance metrics. We tested whether functional connectivity abnormalities in cognitively impaired patients with MS co-occur with (1) overlapping, (2) local, or (3) distal changes in anatomic connectivity and cerebral blood flow abnormalities. METHODS: Multimodal 3T MRI and assessment with the Brief Repeatable Battery of Neuropsychological tests were performed in 102 patients with relapsing-remitting MS and 27 healthy controls. Patients with MS were classified as cognitively impaired if they scored ≥1.5 SDs below the control mean on ≥2 tests (n = 55) or as cognitively preserved (n = 47). Functional connectivity was assessed with Independent Component Analysis and dual regression of resting-state fMRI images. Cerebral blood flow maps were estimated, and anatomic connectivity was assessed with anatomic connectivity mapping and fractional anisotropy of diffusion-weighted MRI. Changes in cerebral blood flow and anatomic connectivity were assessed within resting-state networks that showed functional connectivity abnormalities in cognitively impaired patients with MS. RESULTS: Functional connectivity was significantly decreased in the anterior and posterior default mode networks and significantly increased in the right and left frontoparietal networks in cognitively impaired relative to cognitively preserved patients with MS (threshold-free cluster enhancement corrected at p ≤ 0.05, 2 sided). Networks showing functional abnormalities showed altered cerebral blood flow and anatomic connectivity locally and distally but not in overlapping locations. DISCUSSION: We provide the first evidence that functional connectivity abnormalities are accompanied by local cerebral blood flow and structural connectivity abnormalities but also demonstrate that these effects do not occur in exactly the same location. Our findings suggest a possibly shared pathologic mechanism for altered functional connectivity in brain networks in MS.


Asunto(s)
Disfunción Cognitiva , Esclerosis Múltiple , Encéfalo/patología , Mapeo Encefálico , Disfunción Cognitiva/complicaciones , Disfunción Cognitiva/etiología , Estudios Transversales , Humanos , Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Pruebas Neuropsicológicas
13.
Mov Disord ; 36(11): 2583-2594, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34288137

RESUMEN

BACKGROUND: Brain structure abnormalities throughout the course of Parkinson's disease have yet to be fully elucidated. OBJECTIVE: Using a multicenter approach and harmonized analysis methods, we aimed to shed light on Parkinson's disease stage-specific profiles of pathology, as suggested by in vivo neuroimaging. METHODS: Individual brain MRI and clinical data from 2357 Parkinson's disease patients and 1182 healthy controls were collected from 19 sources. We analyzed regional cortical thickness, cortical surface area, and subcortical volume using mixed-effects models. Patients grouped according to Hoehn and Yahr stage were compared with age- and sex-matched controls. Within the patient sample, we investigated associations with Montreal Cognitive Assessment score. RESULTS: Overall, patients showed a thinner cortex in 38 of 68 regions compared with controls (dmax  = -0.20, dmin  = -0.09). The bilateral putamen (dleft  = -0.14, dright  = -0.14) and left amygdala (d = -0.13) were smaller in patients, whereas the left thalamus was larger (d = 0.13). Analysis of staging demonstrated an initial presentation of thinner occipital, parietal, and temporal cortices, extending toward rostrally located cortical regions with increased disease severity. From stage 2 and onward, the bilateral putamen and amygdala were consistently smaller with larger differences denoting each increment. Poorer cognition was associated with widespread cortical thinning and lower volumes of core limbic structures. CONCLUSIONS: Our findings offer robust and novel imaging signatures that are generally incremental across but in certain regions specific to disease stages. Our findings highlight the importance of adequately powered multicenter collaborations. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Humanos , Imagen por Resonancia Magnética , Neuroimagen , Enfermedad de Parkinson/complicaciones , Tálamo/patología
14.
BMJ Open ; 11(7): e041808, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34301646

RESUMEN

INTRODUCTION: Herpes simplex virus (HSV) encephalitis is a rare severe form of brain inflammation that commonly leaves survivors and their families with devastating long-term consequences. The virus particularly targets the temporal lobe of the brain causing debilitating problems in memory, especially verbal memory. It is postulated that immunomodulation with the corticosteroid, dexamethasone, could improve outcomes by reducing brain swelling. However, there are concerns (so far not observed) that such immunosuppression might facilitate increased viral replication with resultant worsening of disease. A previous trail closed early because of slow recruitment. METHOD: DexEnceph is a pragmatic multicentre, randomised, controlled, open-label, observer-blind trial to determine whether adults with HSV encephalitis who receive dexamethasone alongside standard antiviral treatment with aciclovir for have improved clinical outcomes compared with those who receive standard treatment alone. Overall, 90 patients with HSV encephalitis are being recruited from a target of 45 recruiting sites; patients are randomised 1:1 to the dexamethasone or control arms of the study. The primary outcome measured is verbal memory as assessed by the Weschler Memory Scale fourth edition Auditory Memory Index at 26 weeks after randomisation. Secondary outcomes are measured up to 72 weeks include additional neuropsychological, clinical and functional outcomes as well as comparison of neuroimaging findings. Patient safety monitoring occurs throughout and includes the detection of HSV DNA in cerebrospinal fluid 2 weeks after randomisation, which is indicative of ongoing viral replication. Innovative methods are being used to ensure recrutiment targets are met for this rare disease. DISCUSSION: DexEnceph aims to be the first completed randomised controlled trial of corticosteroid therapy in HSV encephalitis. The results will provide evidence for future practice in managing adults with the condition and has the potential to improve outcomes . ETHICS AND DISSEMINATION: The trial has ethical approval from the UK National Research Ethics Committee (Liverpool Central, REF: 15/NW/0545, 10 August 2015). Protocol V.2.1, July 2019. The results will be published and presented as soon as possible on completion. TRIAL REGISTRATION NUMBERS: ISRCTN11774734, EUDRACT 2015-001609-16.


Asunto(s)
COVID-19 , Encefalitis , Adulto , Dexametasona/uso terapéutico , Humanos , Estudios Multicéntricos como Asunto , Ensayos Clínicos Controlados Aleatorios como Asunto , SARS-CoV-2 , Simplexvirus , Resultado del Tratamiento
15.
Front Neurosci ; 15: 626636, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34093108

RESUMEN

Introduction: Alzheimer's disease (AD) is characterized by cerebral glucose hypometabolism. Hypometabolism may be partly due to reduced glucose transport at the blood-brain barrier (BBB) and across astrocytic and neuronal cell membranes. Glucose transporters (GLUTs) are integral membrane proteins responsible for moving glucose from the bloodstream to parenchymal cells where it is metabolized, and evidence indicates vascular and non-vascular GLUTs are altered in AD brains, a process which could starve the brain of glucose and accelerate cognitive decline. Here we review the literature on glucose transport alterations in AD from human and rodent studies. Methods: Literature published between 1st January 1946 and 1st November 2020 within EMBASE and MEDLINE databases was searched for the terms "glucose transporters" AND "Alzheimer's disease". Human and rodent studies were included while reviews, letters, and in-vitro studies were excluded. Results: Forty-three studies fitting the inclusion criteria were identified, covering human (23 studies) and rodent (20 studies). Post-mortem studies showed consistent reductions in GLUT1 and GLUT3 in the hippocampus and cortex of AD brains, areas of the brain closely associated with AD pathology. Tracer studies in rodent models of AD and human AD also exhibit reduced uptake of glucose and glucose-analogs into the brain, supporting these findings. Longitudinal rodent studies clearly indicate that changes in GLUT1 and GLUT3 only occur after amyloid-ß pathology is present, and several studies indicate amyloid-ß itself may be responsible for GLUT changes. Furthermore, evidence from human and rodent studies suggest GLUT depletion has severe effects on brain function. A small number of studies show GLUT2 and GLUT12 are increased in AD. Anti-diabetic medications improved glucose transport capacity in AD subjects. Conclusions: GLUT1 and GLUT3 are reduced in hippocampal and cortical regions in patients and rodent models of AD, and may be caused by high levels of amyloid-ß in these regions. GLUT3 reductions appear to precede the onset of clinical symptoms. GLUT2 and GLUT12 appear to increase and may have a compensatory role. Repurposing anti-diabetic drugs to modify glucose transport shows promising results in human studies of AD.

16.
Magn Reson Med ; 86(4): 1888-1903, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34002894

RESUMEN

PURPOSE: Dynamic contrast-enhanced (DCE) -MRI with Patlak model analysis is increasingly used to quantify low-level blood-brain barrier (BBB) leakage in studies of pathophysiology. We aimed to investigate systematic errors due to physiological, experimental, and modeling factors influencing quantification of the permeability-surface area product PS and blood plasma volume vp , and to propose modifications to reduce the errors so that subtle differences in BBB permeability can be accurately measured. METHODS: Simulations were performed to predict the effects of potential sources of systematic error on conventional PS and vp quantification: restricted BBB water exchange, reduced cerebral blood flow, arterial input function (AIF) delay and B1+ error. The impact of targeted modifications to the acquisition and processing were evaluated, including: assumption of fast versus no BBB water exchange, bolus versus slow injection of contrast agent, exclusion of early data from model fitting and B1+ correction. The optimal protocol was applied in a cohort of recent mild ischaemic stroke patients. RESULTS: Simulation results demonstrated substantial systematic errors due to the factors investigated (absolute PS error ≤ 4.48 × 10-4 min-1 ). However, these were reduced (≤0.56 × 10-4 min-1 ) by applying modifications to the acquisition and processing pipeline. Processing modifications also had substantial effects on in-vivo normal-appearing white matter PS estimation (absolute change ≤ 0.45 × 10-4 min-1 ). CONCLUSION: Measuring subtle BBB leakage with DCE-MRI presents unique challenges and is affected by several confounds that should be considered when acquiring or interpreting such data. The evaluated modifications should improve accuracy in studies of neurodegenerative diseases involving subtle BBB breakdown.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular , Barrera Hematoencefálica/diagnóstico por imagen , Medios de Contraste , Humanos , Imagen por Resonancia Magnética
17.
NMR Biomed ; 34(7): e4510, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33723901

RESUMEN

The effects of Alzheimer's disease (AD) and ageing on blood-brain barrier (BBB) breakdown are investigated in TgF344-AD and wild-type rats aged 13, 18 and 21 months. Permeability surface area products of the BBB to water (PSw ) and gadolinium-based contrast agent (PSg ) were measured in grey matter using multiflip angle multiecho dynamic contrast-enhanced MRI. At 13 months of age, there was no significant difference in PSw between TgF344-AD and wild-types (p = 0.82). Between 13 and 18 months, PSw increased in TgF344-AD rats (p = 0.027), but not in wild-types (p = 0.99), leading to significantly higher PSw in TgF344-AD rats at 18 months, as previously reported (p = 0.012). Between 18 and 21 months, PSw values increased in wild-types (p = 0.050), but not in TgF344-AD rats (p = 0.50). These results indicate that BBB water permeability is affected by both AD pathology and ageing, but that changes occur earlier in the presence of AD pathology. There were no significant genotype or ageing effects on PSg (p > 0.05). In conclusion, we detected increases in BBB water permeability with age in TgF344-AD and wild-type rats, and found that changes occurred at an earlier age in rats with AD pathology.


Asunto(s)
Envejecimiento/patología , Enfermedad de Alzheimer/patología , Barrera Hematoencefálica/patología , Agua , Animales , Femenino , Hipocampo/metabolismo , Masculino , Modelos Biológicos , Permeabilidad , Ratas Endogámicas F344 , Ratas Transgénicas
18.
Magn Reson Med ; 86(3): 1314-1329, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33780045

RESUMEN

PURPOSE: We sought to determine the degree to which oxygen extraction fraction (OEF) estimated using quantitative susceptibility mapping (QSM) depends on two critical acquisition parameters that have a significant impact on acquisition time: voxel size and final echo time. METHODS: Four healthy volunteers were imaged using a range of isotropic voxel sizes and final echo times. The 0.7 mm data were downsampled at different stages of QSM processing by a factor of 2 (to 1.4 mm), 3 (2.1 mm), or 4 (2.8 mm) to determine the impact of voxel size on each analysis step. OEF was estimated from 11 veins of varying diameter. Inter- and intra-session repeatability were estimated for the optimal protocol by repeat scanning in 10 participants. RESULTS: Final echo time was found to have no significant effect on OEF. The effect of voxel size was significant, with larger voxel sizes underestimating OEF, depending on the proximity of the vein to the superficial surface of the brain and on vein diameter. The last analysis step of estimating vein OEF values from susceptibility images had the largest dependency on voxel size. Inter-session coefficients of variation on OEF estimates of between 5.2% and 8.7% are reported, depending on the vein. CONCLUSION: QSM acquisition times can be minimized by reducing the final echo time but an isotropic voxel size no larger than 1 mm is needed to accurately estimate OEF in most medium/large veins in the brain. Such acquisitions can be achieved in under 4 min.


Asunto(s)
Mapeo Encefálico , Oxígeno , Encéfalo/diagnóstico por imagen , Circulación Cerebrovascular , Humanos , Imagen por Resonancia Magnética , Consumo de Oxígeno
19.
J Cereb Blood Flow Metab ; 41(8): 1939-1953, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33325766

RESUMEN

Multi-diffusion-time diffusion-weighted MRI can probe tissue microstructure, but the method has not been widely applied to the microvasculature. At long diffusion-times, blood flow in capillaries is in the diffusive regime, and signal attenuation is dependent on blood velocity (v) and capillary segment length (l). It is described by the pseudo-diffusion coefficient (D*=vl/6) of intravoxel incoherent motion (IVIM). At shorter diffusion-times, blood flow is in the ballistic regime, and signal attenuation depends on v, and not l. In theory, l could be estimated using D* and v. In this study, we compare the accuracy and repeatability of three approaches to estimating v, and therefore l: the IVIM ballistic model, the velocity autocorrelation model, and the ballistic approximation to the velocity autocorrelation model. Twenty-nine rat datasets from two strains were acquired at 7 T, with b-values between 0 and 1000 smm-2 and diffusion times between 11.6 and 50 ms. Five rats were scanned twice to assess scan-rescan repeatability. Measurements of l were validated using corrosion casting and micro-CT imaging. The ballistic approximation of the velocity autocorrelation model had lowest bias relative to corrosion cast estimates of l, and had highest repeatability.


Asunto(s)
Velocidad del Flujo Sanguíneo/fisiología , Encéfalo/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Microvasos/fisiología , Animales , Encéfalo/irrigación sanguínea , Interpretación de Imagen Asistida por Computador , Modelos Biológicos , Ratas , Ratas Endogámicas F344 , Relación Señal-Ruido , Microtomografía por Rayos X
20.
iScience ; 23(11): 101657, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33163932

RESUMEN

Frequency-dependent reorganization of the primary somatosensory cortex, together with perceptual changes, arises following repetitive sensory stimulation. Here, we investigate the role of GABA in this process. We co-stimulated two finger tips and measured GABA and Glx using magnetic resonance (MR) spectroscopy at the beginning and end of the stimulation. Participants performed a perceptual learning task before and after stimulation. There were 2 sessions with stimulation frequency either at or above the resonance frequency of the primary somatosensory cortex (23 and 39 Hz, respectively). Perceptual learning occurred following above resonance stimulation only, while GABA reduced during this condition. Lower levels of early GABA were associated with greater perceptual learning. One possible mechanism underlying this finding is that cortical disinhibition "unmasks" lateral connections within the cortex to permit adaptation to the sensory environment. These results provide evidence in humans for a frequency-dependent inhibitory mechanism underlying learning and suggest a mechanism-based approach for optimizing neurostimulation frequency.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA