Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
2.
Brain ; 146(4): 1697-1713, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-36148553

RESUMEN

Schwannoma tumours typically arise on the eighth cranial nerve and are mostly caused by loss of the tumour suppressor Merlin (NF2). There are no approved chemotherapies for these tumours and the surgical removal of the tumour carries a high risk of damage to the eighth or other close cranial nerve tissue. New treatments for schwannoma and other NF2-null tumours such as meningioma are urgently required. Using a combination of human primary tumour cells and mouse models of schwannoma, we have examined the role of the Hippo signalling pathway in driving tumour cell growth. Using both genetic ablation of the Hippo effectors YAP and TAZ as well as novel TEAD palmitoylation inhibitors, we show that Hippo signalling may be successfully targeted in vitro and in vivo to both block and, remarkably, regress schwannoma tumour growth. In particular, successful use of TEAD palmitoylation inhibitors in a preclinical mouse model of schwannoma points to their potential future clinical use. We also identify the cancer stem cell marker aldehyde dehydrogenase 1A1 (ALDH1A1) as a Hippo signalling target, driven by the TAZ protein in human and mouse NF2-null schwannoma cells, as well as in NF2-null meningioma cells, and examine the potential future role of this new target in halting schwannoma and meningioma tumour growth.


Asunto(s)
Neoplasias Meníngeas , Meningioma , Neurilemoma , Animales , Humanos , Ratones , Proliferación Celular , Neurilemoma/genética , Neurilemoma/patología , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Proteínas Señalizadoras YAP/metabolismo , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ/metabolismo , Factores de Transcripción de Dominio TEA/metabolismo
3.
Cancer Res ; 82(2): 235-247, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34853069

RESUMEN

Deficiency of the tumor suppressor Merlin causes development of schwannoma, meningioma, and ependymoma tumors, which can occur spontaneously or in the hereditary disease neurofibromatosis type 2 (NF2). Merlin mutations are also relevant in a variety of other tumors. Surgery and radiotherapy are current first-line treatments; however, tumors frequently recur with limited treatment options. Here, we use human Merlin-negative schwannoma and meningioma primary cells to investigate the involvement of the endogenous retrovirus HERV-K in tumor development. HERV-K proteins previously implicated in tumorigenesis were overexpressed in schwannoma and all meningioma grades, and disease-associated CRL4DCAF1 and YAP/TEAD pathways were implicated in this overexpression. In normal Schwann cells, ectopic overexpression of HERV-K Env increased proliferation and upregulated expression of c-Jun and pERK1/2, which are key components of known tumorigenic pathways in schwannoma, JNK/c-Jun, and RAS/RAF/MEK/ERK. Furthermore, FDA-approved retroviral protease inhibitors ritonavir, atazanavir, and lopinavir reduced proliferation of schwannoma and grade I meningioma cells. These results identify HERV-K as a critical regulator of progression in Merlin-deficient tumors and offer potential strategies for therapeutic intervention. SIGNIFICANCE: The endogenous retrovirus HERV-K activates oncogenic signaling pathways and promotes proliferation of Merlin-deficient schwannomas and meningiomas, which can be targeted with antiretroviral drugs and TEAD inhibitors.


Asunto(s)
Antirretrovirales/farmacología , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Retrovirus Endógenos/metabolismo , Neoplasias Meníngeas/metabolismo , Meningioma/metabolismo , Neurilemoma/metabolismo , Neurofibromina 2/metabolismo , Proteínas Virales/metabolismo , Carcinogénesis/genética , Carcinogénesis/metabolismo , Células HEK293 , Humanos , Neoplasias Meníngeas/complicaciones , Neoplasias Meníngeas/patología , Neoplasias Meníngeas/virología , Meningioma/complicaciones , Meningioma/patología , Meningioma/virología , Neurilemoma/complicaciones , Neurilemoma/patología , Neurilemoma/virología , Neurofibromatosis 2/complicaciones , Neurofibromina 2/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transfección , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/genética
4.
Front Cell Neurosci ; 15: 688243, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34744629

RESUMEN

Following peripheral nerve injury, transcription factors upregulated in the distal nerve play essential roles in Schwann cell reprogramming, fibroblast activation and immune cell function to create a permissive distal nerve environment for axonal regrowth. In this report, we first analysed four microarray data sets to identify transcription factors that have at least twofold upregulation in the mouse distal nerve stump at day 3 and day 7 post-injury. Next, we compared their relative mRNA levels through the analysis of an available bulk mRNA sequencing data set at day 5 post-injury. We then investigated the expression of identified TFs in analysed single-cell RNA sequencing data sets for the distal nerve at day 3 and day 9 post-injury. These analyses identified 55 transcription factors that have at least twofold upregulation in the distal nerve following mouse sciatic nerve injury. Expression profile for the identified 55 transcription factors in cells of the distal nerve stump was further analysed on the scRNA-seq data. Transcription factor network and functional analysis were performed in Schwann cells. We also validated the expression pattern of Jun, Junb, Runx1, Runx2, and Sox2 in the mouse distal nerve stump by immunostaining. The findings from our study not only could be used to understand the function of key transcription factors in peripheral nerve regeneration but also could be used to facilitate experimental design for future studies to investigate the function of individual TFs in peripheral nerve regeneration.

5.
Front Cell Neurosci ; 15: 624826, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33828460

RESUMEN

The advances in single-cell RNA sequencing technologies and the development of bioinformatics pipelines enable us to more accurately define the heterogeneity of cell types in a selected tissue. In this report, we re-analyzed recently published single-cell RNA sequencing data sets and provide a rationale to redefine the heterogeneity of cells in both intact and injured mouse peripheral nerves. Our analysis showed that, in both intact and injured peripheral nerves, cells could be functionally classified into four categories: Schwann cells, nerve fibroblasts, immune cells, and cells associated with blood vessels. Nerve fibroblasts could be sub-clustered into epineurial, perineurial, and endoneurial fibroblasts. Identified immune cell clusters include macrophages, mast cells, natural killer cells, T and B lymphocytes as well as an unreported cluster of neutrophils. Cells associated with blood vessels include endothelial cells, vascular smooth muscle cells, and pericytes. We show that endothelial cells in the intact mouse sciatic nerve have three sub-types: epineurial, endoneurial, and lymphatic endothelial cells. Analysis of cell type-specific gene changes revealed that Schwann cells and endoneurial fibroblasts are the two most important cell types promoting peripheral nerve regeneration. Analysis of communication between these cells identified potential signals for early blood vessel regeneration, neutrophil recruitment of macrophages, and macrophages activating Schwann cells. Through this analysis, we also report appropriate marker genes for future single cell transcriptome data analysis to identify cell types in intact and injured peripheral nerves. The findings from our analysis could facilitate a better understanding of cell biology of peripheral nerves in homeostasis, regeneration, and disease.

6.
Dev Dyn ; 250(9): 1340-1357, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33347679

RESUMEN

BACKGROUND: Slits (1-3) and their Robo (1-3) receptors play multiple non-neuronal roles in development, including in development of muscle, heart and mammary gland. Previous work has demonstrated expression of Slit and Robo family members during limb development, where their functions are unclear. RESULTS: In situ hybridisation confirmed strong expression of Slit2, Slit3, Robo1, and Robo2 throughout mouse limb and joint development. No expression of Slit1 or Robo3 was detected. Analysis of Slit1/2 or Slit3 knockout mice revealed normal limb development. In contrast, locally blocking Slit signaling though grafting of cells expressing a dominant-negative Robo2 construct in the proximo-central region of developing chicken limb buds caused significant shortening of the humerus. CONCLUSIONS: These findings demonstrate an essential role for Slit/Robo signaling in regulating bone length during chicken limb development.


Asunto(s)
Proteínas del Tejido Nervioso , Receptores Inmunológicos , Animales , Pollos , Húmero/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Transducción de Señal/genética
7.
Glia ; 69(2): 235-254, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32697392

RESUMEN

Schwann cells within the peripheral nervous system possess a remarkable regenerative potential. Current research shows that peripheral nerve-associated Schwann cells possess the capacity to promote repair of multiple tissues including peripheral nerve gap bridging, skin wound healing, digit tip repair as well as tooth regeneration. One of the key features of the specialized repair Schwann cells is that they become highly motile. They not only migrate into the area of damaged tissue and become a key component of regenerating tissue but also secrete signaling molecules to attract macrophages, support neuronal survival, promote axonal regrowth, activate local mesenchymal stem cells, and interact with other cell types. Currently, the importance of migratory Schwann cells in tissue regeneration is most evident in the case of a peripheral nerve transection injury. Following nerve transection, Schwann cells from both proximal and distal nerve stumps migrate into the nerve bridge and form Schwann cell cords to guide axon regeneration. The formation of Schwann cell cords in the nerve bridge is key to successful peripheral nerve repair following transection injury. In this review, we first examine nerve bridge formation and the behavior of Schwann cell migration in the nerve bridge, and then discuss how migrating Schwann cells direct regenerating axons into the distal nerve. We also review the current understanding of signals that could activate Schwann cell migration and signals that Schwann cells utilize to direct axon regeneration. Understanding the molecular mechanism of Schwann cell migration could potentially offer new therapeutic strategies for peripheral nerve repair.


Asunto(s)
Axones , Traumatismos de los Nervios Periféricos , Humanos , Regeneración Nerviosa , Nervios Periféricos , Células de Schwann
8.
Front Cell Neurosci ; 14: 237, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32848626

RESUMEN

The fibroblast growth factor (FGF) family polypeptides play key roles in promoting tissue regeneration and repair. FGF5 is strongly up-regulated in Schwann cells of the peripheral nervous system following injury; however, a role for FGF5 in peripheral nerve regeneration has not been shown up to now. In this report, we examined the expression of FGF5 and its receptors FGFR1-4 in Schwann cells of the mouse sciatic nerve following injury, and then measured the effects of FGF5 treatment upon cultured primary rat Schwann cells. By microarray and mRNA sequencing data analysis, RT-PCR, qPCR, western blotting and immunostaining, we show that FGF5 is highly up-regulated in Schwann cells of the mouse distal sciatic nerve following injury, and FGFR1 and FGFR2 are highly expressed in Schwann cells of the peripheral nerve both before and following injury. Using cultured primary rat Schwann cells, we show that FGF5 inhibits ERK1/2 MAP kinase activity but promotes rapid Schwann cell migration and adhesion via the upregulation of N-cadherin. Thus, FGF5 is an autocrine regulator of Schwann cells to regulate Schwann cell migration and adhesion.

9.
J Clin Invest ; 130(7): 3848-3864, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32315290

RESUMEN

Cancer cells can develop a strong addiction to discrete molecular regulators, which control the aberrant gene expression programs that drive and maintain the cancer phenotype. Here, we report the identification of the RNA-binding protein HuR/ELAVL1 as a central oncogenic driver for malignant peripheral nerve sheath tumors (MPNSTs), which are highly aggressive sarcomas that originate from cells of the Schwann cell lineage. HuR was found to be highly elevated and bound to a multitude of cancer-associated transcripts in human MPNST samples. Accordingly, genetic and pharmacological inhibition of HuR had potent cytostatic and cytotoxic effects on tumor growth, and strongly suppressed metastatic capacity in vivo. Importantly, we linked the profound tumorigenic function of HuR to its ability to simultaneously regulate multiple essential oncogenic pathways in MPNST cells, including the Wnt/ß-catenin, YAP/TAZ, RB/E2F, and BET pathways, which converge on key transcriptional networks. Given the exceptional dependency of MPNST cells on HuR for survival, proliferation, and dissemination, we propose that HuR represents a promising therapeutic target for MPNST treatment.


Asunto(s)
Carcinogénesis/metabolismo , Proliferación Celular , Proteína 1 Similar a ELAV/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias de la Vaina del Nervio/metabolismo , Transducción de Señal , Animales , Carcinogénesis/genética , Carcinogénesis/patología , Línea Celular Tumoral , Proteína 1 Similar a ELAV/genética , Humanos , Ratones , Metástasis de la Neoplasia , Proteínas de Neoplasias/genética , Neoplasias de la Vaina del Nervio/genética , Neoplasias de la Vaina del Nervio/patología
10.
Neural Regen Res ; 15(1): 6-9, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31535634

RESUMEN

The peripheral nervous system has an astonishing ability to regenerate following a compression or crush injury; however, the potential for full repair following a transection injury is much less. Currently, the major clinical challenge for peripheral nerve repair come from long gaps between the proximal and distal nerve stumps, which prevent regenerating axons reaching the distal nerve. Precise axon targeting during nervous system development is controlled by families of axon guidance molecules including Netrins, Slits, Ephrins and Semaphorins. Several recent studies have indicated key roles of Netrin1, Slit3 and EphrinB2 signalling in controlling the formation of new nerve bridge tissue and precise axon regeneration after peripheral nerve transection injury. Inside the nerve bridge, nerve fibroblasts express EphrinB2 while migrating Schwann cells express the receptor EphB2. EphrinB2/EphB2 signalling between nerve fibroblasts and migrating Schwann cells is required for Sox2 upregulation in Schwann cells and the formation of Schwann cell cords within the nerve bridge to allow directional axon growth to the distal nerve stump. Macrophages in the outermost layer of the nerve bridge express Slit3 while migrating Schwann cells and regenerating axons express the receptor Robo1; within Schwann cells, Robo1 expression is also Sox2-dependent. Slit3/Robo1 signalling is required to keep migrating Schwann cells and regenerating axons inside the nerve bridge. In addition to the Slit3/Robo1 signalling system, migrating Schwann cells also express Netrin1 and regenerating axons express the DCC receptor. It appears that migrating Schwann cells could also use Netrin1 as a guidance cue to direct regenerating axons across the peripheral nerve gap. Engineered neural tissues have been suggested as promising alternatives for the repair of large peripheral nerve gaps. Therefore, understanding the function of classic axon guidance molecules in nerve bridge formation and their roles in axon regeneration could be highly beneficial in developing engineered neural tissue for more effective peripheral nerve repair.

11.
Cell Rep ; 26(6): 1458-1472.e4, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30726731

RESUMEN

Slit-Robo signaling has been characterized as a repulsive signal for precise axon pathfinding and cell migration during embryonic development. Here, we describe a role for Sox2 in the regulation of Robo1 in Schwann cells and for Slit3-Robo1 signaling in controlling axon guidance within the newly formed nerve bridge following peripheral nerve transection injury. In particular, we show that macrophages form the outermost layer of the nerve bridge and secrete high levels of Slit3, while migratory Schwann cells and fibroblasts inside the nerve bridge express the Robo1 receptor. In line with this pattern of Slit3 and Robo1 expression, we observed multiple axon regeneration and cell migration defects in the nerve bridge of Sox2-, Slit3-, and Robo1-mutant mice. Our findings have revealed important functions for macrophages in the peripheral nervous system, utilizing Slit3-Robo1 signaling to control correct peripheral nerve bridge formation and precise axon targeting to the distal nerve stump following injury.


Asunto(s)
Orientación del Axón , Macrófagos/metabolismo , Proteínas de la Membrana/metabolismo , Regeneración Nerviosa , Nervios Periféricos/metabolismo , Animales , Movimiento Celular , Células Cultivadas , Femenino , Fibroblastos/metabolismo , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Nervios Periféricos/fisiología , Ratas , Ratas Wistar , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Células de Schwann/metabolismo , Transducción de Señal , Proteínas Roundabout
12.
Front Neurosci ; 13: 1326, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31920495

RESUMEN

Vasoactive Intestinal Peptide (VIP) and Pituitary Adenylyl Cyclase Activating Peptide (PACAP) are regeneration-associated neuropeptides, which are up-regulated by neurons following peripheral nerve injury. So far, they have only been studied for their roles as autocrine signals for both neuronal survival and axon outgrowth during peripheral nerve regeneration. In this report, we examined VIP and PACAP's paracrine effects on Schwann cells and macrophages in the distal nerve stump during peripheral nerve regeneration. We show that VPAC1, VPAC2, and PAC1 are all up-regulated in the mouse distal nerve following peripheral nerve injury and are highly expressed in Schwann cells and macrophages within the distal sciatic nerve. We further investigated the effect of VIP and PACAP on cultured rat Schwann cells, and found that VIP and PACAP can not only promote myelin gene expression in Schwann cells but can also inhibit the release of pro-inflammatory cytokines by Schwann cells. Furthermore, we show that VIP and PACAP inhibit the release of pro-inflammatory cytokines and enhance anti-inflammatory cytokine expression in sciatic nerve explants. Our results provide evidence that VIP and PACAP could have important functions in the distal nerve stump following injury to promote remyelination and regulate the inflammatory response. Thus, VIP and PACAP receptors appear as important targets to promote peripheral nerve repair following injury.

13.
Front Mol Neurosci ; 12: 308, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31920539

RESUMEN

While it is proposed that interaction between Schwann cells and axons is key for successful nerve regeneration, the behavior of Schwann cells migrating into a nerve gap following a transection injury and how migrating Schwann cells interact with regenerating axons within the nerve bridge has not been studied in detail. In this study, we combine the use of our whole-mount sciatic nerve staining with the use of a proteolipid protein-green fluorescent protein (PLP-GFP) mouse model to mark Schwann cells and have examined the behavior of migrating Schwann cells and regenerating axons in the sciatic nerve gap following a nerve transection injury. We show here that Schwann cell migration from both nerve stumps starts later than the regrowth of axons from the proximal nerve stump. The first migrating Schwann cells are only observed 4 days following mouse sciatic nerve transection injury. Schwann cells migrating from the proximal nerve stump overtake regenerating axons on day 5 and form Schwann cell cords within the nerve bridge by 7 days post-transection injury. Regenerating axons begin to attach to migrating Schwann cells on day 6 and then follow their trajectory navigating across the nerve gap. We also observe that Schwann cell cords in the nerve bridge are not wide enough to guide all the regenerating axons across the nerve bridge, resulting in regenerating axons growing along the outside of both proximal and distal nerve stumps. From this analysis, we demonstrate that Schwann cells play a crucial role in controlling the directionality and speed of axon regeneration across the nerve gap. We also demonstrate that the use of the PLP-GFP mouse model labeling Schwann cells together with the whole sciatic nerve axon staining technique is a useful research model to study the process of peripheral nerve regeneration.

14.
Methods Mol Biol ; 1791: 251-262, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30006716

RESUMEN

Injury to the peripheral nervous system begins a well-characterized process within both neurons and Schwann cells to allow axonal regrowth, remyelination, and functional repair. Models of peripheral nerve injury have been widely used to study the behavior of Schwann cells, neurons, and other cell types such as macrophages as the events of Wallerian degeneration and regeneration take place. The most commonly used approaches in rodent models to model nerve injury in human patients are sciatic nerve transection and nerve crush, and both have well established time courses of demyelination, immune cell influx, axonal regrowth, and remyelination. We describe the techniques of sciatic nerve surgery for transection and crush injury, together with methods for the analysis of events within peripheral nerve repair in these two models.


Asunto(s)
Regeneración Nerviosa , Traumatismos de los Nervios Periféricos/patología , Traumatismos de los Nervios Periféricos/fisiopatología , Remielinización , Animales , Axones/metabolismo , Enfermedades Desmielinizantes/etiología , Modelos Animales de Enfermedad , Vaina de Mielina/metabolismo , Compresión Nerviosa/efectos adversos , Traumatismos de los Nervios Periféricos/etiología , Nervio Ciático/lesiones
15.
Methods Mol Biol ; 1739: 339-348, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29546718

RESUMEN

Injury to the peripheral nervous system triggers a series of well-defined events within both neurons and the Schwann cells to allow efficient axonal regeneration, remyelination, and functional repair. The study of these events has previously been done using sections of nerve material to analyze axonal regrowth, cell migration, and immune cell infiltration following injury. This approach, however, has the obvious disadvantage that it is not possible to follow, for instance, the path of regenerating axons in three dimensions within the nerve trunk or the nerve bridge. In order to provide a fuller picture of such events, we have developed a whole mount staining procedure to visualize blood vessel regeneration, Schwann cell migration, axonal regrowth, and remyelination in models of nerve injury.


Asunto(s)
Traumatismos de los Nervios Periféricos/fisiopatología , Nervio Ciático/fisiología , Animales , Axones/fisiología , Ratones , Neuronas/fisiología , Células de Schwann/citología , Células de Schwann/fisiología
16.
Methods Mol Biol ; 1739: 349-357, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29546719

RESUMEN

The use of electron microscopy allows analysis of the microarchitecture of peripheral nerves both during development and in the processes of nerve regeneration and repair.We describe a novel method for the rapid analysis and quantification of myelin in peripheral nerve using a low vacuum scanning electron microscopy protocol. For this methodology, excised nerves are prepared for traditional transmission electron microscopy (TEM) imaging, but at the stage where semi-thin sections would be taken, the resin block is instead imaged at low vacuum in the scanning electron microscope (SEM) using the backscattered electron signal. Any features in the tissue which have incorporated high concentrations of osmium from the fixation process (e.g., myelin) appear as bright regions in the image.Myelin therefore is easily identifiable in the images, and since there is a high contrast difference between it and the surrounding tissue, automated measurements for myelin thickness (e.g., G ratio) using standard and freely available image analysis software (e.g., ImageJ) are easily achievable, consistent, and repeatable. This method therefore greatly speeds up the analysis of nerve samples and, in many cases, will obviate the need for ultrathin sections and TEM for analyzing nerve morphology.Low vacuum (LV) SEM imaging has benefits compared with light microscopy; magnification is continuous, resolution is higher, and contrast and brightness are controllable. Since the resin block does not need a metal coating for imaging in LV mode, once the images have been collected, the block is still ready to section for both light microscopy (LM) and TEM.


Asunto(s)
Microscopía Electrónica de Rastreo/métodos , Células de Schwann/citología , Animales , Ratones , Vaina de Mielina/metabolismo , Células de Schwann/ultraestructura , Nervio Ciático/fisiología , Nervio Ciático/ultraestructura
17.
Development ; 144(17): 3114-3125, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28743796

RESUMEN

Correct myelination is crucial for the function of the peripheral nervous system. Both positive and negative regulators within the axon and Schwann cell function to ensure the correct onset and progression of myelination during both development and following peripheral nerve injury and repair. The Sox2 transcription factor is well known for its roles in the development and maintenance of progenitor and stem cell populations, but has also been proposed in vitro as a negative regulator of myelination in Schwann cells. We wished to test fully whether Sox2 regulates myelination in vivo and show here that, in mice, sustained Sox2 expression in vivo blocks myelination in the peripheral nerves and maintains Schwann cells in a proliferative non-differentiated state, which is also associated with increased inflammation within the nerve. The plasticity of Schwann cells allows them to re-myelinate regenerated axons following injury and we show that re-myelination is also blocked by Sox2 expression in Schwann cells. These findings identify Sox2 as a physiological regulator of Schwann cell myelination in vivo and its potential to play a role in disorders of myelination in the peripheral nervous system.


Asunto(s)
Macrófagos/metabolismo , Vaina de Mielina/metabolismo , Nervios Periféricos/metabolismo , Factores de Transcripción SOXB1/metabolismo , Células de Schwann/metabolismo , Animales , Biomarcadores/metabolismo , Cadherinas/metabolismo , Proliferación Celular , Proteína 2 de la Respuesta de Crecimiento Precoz/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Ratones Transgénicos , Actividad Motora , Conducción Nerviosa , Traumatismos de los Nervios Periféricos/metabolismo , Traumatismos de los Nervios Periféricos/patología , Nervios Periféricos/patología , Nervios Periféricos/ultraestructura , Proteínas Proto-Oncogénicas c-jun/metabolismo , Ratas , Recuperación de la Función , Células de Schwann/patología , Transgenes , beta Catenina/metabolismo
18.
Int J Mol Sci ; 18(3)2017 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-28245592

RESUMEN

Netrin-1 was the first axon guidance molecule to be discovered in vertebrates and has a strong chemotropic function for axonal guidance, cell migration, morphogenesis and angiogenesis. It is a secreted axon guidance cue that can trigger attraction by binding to its canonical receptors Deleted in Colorectal Cancer (DCC) and Neogenin or repulsion through binding the DCC/Uncoordinated (Unc5) A-D receptor complex. The crystal structures of Netrin-1/receptor complexes have recently been revealed. These studies have provided a structure based explanation of Netrin-1 bi-functionality. Netrin-1 and its receptor are continuously expressed in the adult nervous system and are differentially regulated after nerve injury. In the adult spinal cord and optic nerve, Netrin-1 has been considered as an inhibitor that contributes to axon regeneration failure after injury. In the peripheral nervous system, Netrin-1 receptors are expressed in Schwann cells, the cell bodies of sensory neurons and the axons of both motor and sensory neurons. Netrin-1 is expressed in Schwann cells and its expression is up-regulated after peripheral nerve transection injury. Recent studies indicated that Netrin-1 plays a positive role in promoting peripheral nerve regeneration, Schwann cell proliferation and migration. Targeting of the Netrin-1 signaling pathway could develop novel therapeutic strategies to promote peripheral nerve regeneration and functional recovery.


Asunto(s)
Factores de Crecimiento Nervioso/metabolismo , Regeneración Nerviosa , Transducción de Señal , Proteínas Supresoras de Tumor/metabolismo , Animales , Movimiento Celular , Expresión Génica , Humanos , Factores de Crecimiento Nervioso/química , Netrina-1 , Nervio Óptico/fisiología , Traumatismos de los Nervios Periféricos/genética , Traumatismos de los Nervios Periféricos/metabolismo , Traumatismos de los Nervios Periféricos/patología , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Receptores de Inmunoglobulina Polimérica/metabolismo , Células de Schwann/metabolismo , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Proteínas Supresoras de Tumor/química
19.
PLoS One ; 12(2): e0172736, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28234971

RESUMEN

The secreted glycoproteins, Slit1-3, are classic axon guidance molecules that act as repulsive cues through their well characterised receptors Robo1-2 to allow precise axon pathfinding and neuronal migration. The expression patterns of Slit1-3 and Robo1-2 have been most characterized in the rodent developing nervous system and the adult brain, but little is known about their expression patterns in the adult rodent peripheral nervous system. Here, we report a detailed expression analysis of Slit1-3 and Robo1-2 in the adult mouse sciatic nerve as well as their expression in the nerve cell bodies within the ventral spinal cord (motor neurons) and dorsal root ganglion (sensory neurons). Our results show that, in the adult mouse peripheral nervous system, Slit1-3 and Robo1-2 are expressed in the cell bodies and axons of both motor and sensory neurons. While Slit1 and Robo2 are only expressed in peripheral axons and their cell bodies, Slit2, Slit3 and Robo1 are also expressed in satellite cells of the dorsal root ganglion, Schwann cells and fibroblasts of peripheral nerves. In addition to these expression patterns, we also demonstrate the expression of Robo1 in blood vessels of the peripheral nerves. Our work gives important new data on the expression patterns of Slit and Robo family members within the peripheral nervous system that may relate both to nerve homeostasis and the reaction of the peripheral nerves to injury.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/biosíntesis , Proteínas de la Membrana/biosíntesis , Proteínas del Tejido Nervioso/biosíntesis , Receptores Inmunológicos/biosíntesis , Animales , Axones/metabolismo , Vasos Sanguíneos/metabolismo , Movimiento Celular/genética , Ganglios Espinales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Neuronas Motoras/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Sistema Nervioso Periférico/metabolismo , Receptores Inmunológicos/metabolismo , Nervio Ciático/metabolismo , Células Receptoras Sensoriales/metabolismo , Médula Espinal/metabolismo , Proteínas Roundabout
20.
J Cell Biol ; 216(2): 495-510, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28137778

RESUMEN

Loss of the Merlin tumor suppressor and activation of the Hippo signaling pathway play major roles in the control of cell proliferation and tumorigenesis. We have identified completely novel roles for Merlin and the Hippo pathway effector Yes-associated protein (YAP) in the control of Schwann cell (SC) plasticity and peripheral nerve repair after injury. Injury to the peripheral nervous system (PNS) causes a dramatic shift in SC molecular phenotype and the generation of repair-competent SCs, which direct functional repair. We find that loss of Merlin in these cells causes a catastrophic failure of axonal regeneration and remyelination in the PNS. This effect is mediated by activation of YAP expression in Merlin-null SCs, and loss of YAP restores axonal regrowth and functional repair. This work identifies new mechanisms that control the regenerative potential of SCs and gives new insight into understanding the correct control of functional nerve repair in the PNS.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proliferación Celular , Lesiones por Aplastamiento/metabolismo , Regeneración Nerviosa , Neurofibromina 2/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Células de Schwann/metabolismo , Nervio Ciático/metabolismo , Neuropatía Ciática/metabolismo , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Axones/metabolismo , Axones/patología , Proteínas de Ciclo Celular , Lesiones por Aplastamiento/genética , Lesiones por Aplastamiento/patología , Lesiones por Aplastamiento/fisiopatología , Modelos Animales de Enfermedad , Femenino , Genotipo , Vía de Señalización Hippo , Masculino , Ratones Noqueados , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Actividad Motora , Vaina de Mielina/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Neurofibromina 2/deficiencia , Neurofibromina 2/genética , Plasticidad Neuronal , Fenotipo , Fosfoproteínas/deficiencia , Fosfoproteínas/genética , Proteínas Proto-Oncogénicas c-jun/metabolismo , Recuperación de la Función , Células de Schwann/patología , Nervio Ciático/lesiones , Nervio Ciático/patología , Nervio Ciático/fisiopatología , Neuropatía Ciática/genética , Neuropatía Ciática/patología , Neuropatía Ciática/fisiopatología , Transducción de Señal , Factores de Tiempo , Proteínas Señalizadoras YAP
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...