Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Med Biol ; 67(4)2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35171115

RESUMEN

An avalanche photodiode (APD)-based small animal positron emission tomography (PET)-insert was fully evaluated for its PET performance, as well as potential influences on magnetic resonance imaging (MRI) performance. This PET-insert has an extended axial field of view (FOV) compared with the previous design to increase system sensitivity, as well as an updated cooling and temperature regulation to enable stable and reproducible PET acquisitions. The PET performance was evaluated according to the National Electrical Manufacturers Association NU4-2008 protocol. The energy and timing resolution's full width at half maximum were 16.1% and 4.7 ns, respectively. The reconstructed radial spatial resolution of the PET-insert was 1.8 mm full width at half maximum at the center FOV using filtered back projection for reconstruction and sensitivity was 3.68%. The peak noise equivalent count rates were 70 kcps for a rat-like and 350 kcps for a mouse-like phantom, respectively. Image quality phantom values and contrast recovery were comparable to state-of-the art PET-inserts and standalone systems. Regarding MR compatibility, changes in the mean signal-to-noise ratio for turbo spin echo and echo-planar imaging sequences were below 8.6%, for gradient echo sequences below 1%. Degradation of the mean homogeneity was below 2.3% for all tested sequences. The influence of the PET-insert on theB0maps was negligible and no influence on functional MRI sequences was detected. A mouse and rat imaging study demonstrated the feasibility ofin vivosimultaneous PET/MRI.


Asunto(s)
Avalanchas , Animales , Imagen por Resonancia Magnética/veterinaria , Ratones , Fantasmas de Imagen , Tomografía de Emisión de Positrones/veterinaria , Ratas , Tomografía Computarizada por Rayos X
2.
Mol Imaging Biol ; 22(2): 223-244, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31168682

RESUMEN

Positron emission tomography (PET) is a non-invasive imaging technology employed to describe metabolic, physiological, and biochemical processes in vivo. These include receptor availability, metabolic changes, neurotransmitter release, and alterations of gene expression in the brain. Since the introduction of dedicated small-animal PET systems along with the development of many novel PET imaging probes, the number of PET studies using rats and mice in basic biomedical research tremendously increased over the last decade. This article reviews challenges and advances of quantitative rodent brain imaging to make the readers aware of its physical limitations, as well as to inspire them for its potential applications in preclinical research. In the first section, we briefly discuss the limitations of small-animal PET systems in terms of spatial resolution and sensitivity and point to possible improvements in detector development. In addition, different acquisition and post-processing methods used in rodent PET studies are summarized. We further discuss factors influencing the test-retest variability in small-animal PET studies, e.g., different receptor quantification methodologies which have been mainly translated from human to rodent receptor studies to determine the binding potential and changes of receptor availability and radioligand affinity. We further review different kinetic modeling approaches to obtain quantitative binding data in rodents and PET studies focusing on the quantification of endogenous neurotransmitter release using pharmacological interventions. While several studies have focused on the dopamine system due to the availability of several PET tracers which are sensitive to dopamine release, other neurotransmitter systems have become more and more into focus and are described in this review, as well. We further provide an overview of latest genome engineering technologies, including the CRISPR/Cas9 and DREADD systems that may advance our understanding of brain disorders and function and how imaging has been successfully applied to animal models of human brain disorders. Finally, we review the strengths and opportunities of simultaneous PET/magnetic resonance imaging systems to study drug-receptor interactions and challenges for the translation of PET results from bench to bedside.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Tomografía de Emisión de Positrones/métodos , Animales , Biomarcadores/metabolismo , Sistemas CRISPR-Cas , Ingeniería Genética , Humanos , Imagen por Resonancia Magnética/instrumentación , Ratones , Neurotransmisores/metabolismo , Tomografía de Emisión de Positrones/instrumentación , Ratas
3.
SLAS Technol ; 24(3): 321-329, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30500308

RESUMEN

Radiosynthesis of [1-11C]acetate is well described in literature, but all syntheses either require adaptations in complex commercial synthesizers or rely on closed-source hardware and software control. Arduino microcontrollers are ideal for the compact, flexible, and inexpensive control of low-complexity hardware, making them particularly suited for radiochemistry where operation in space-limited shielded hot cells is mandatory. We established a [1-11C]acetate radiosynthesis module for combination with a [11C]MeI module available in almost every lab working with 11C. Its small footprint even enables back-to-back production in a hot cell already occupied by other modules. Using this setup, we achieved a reliable and flexible supply of this tracer, with radiochemical yields of 51.4 ± 28.2% and radiochemical purities (RCPs) of 94.4 ± 6.7% ( n = 9) in a synthesis time of 15 minutes. Positron emission tomography (PET) and biodistribution analysis demonstrated low background uptake in healthy mice, with highest uptake in liver and kidneys. Arduino microcontrollers have become valuable and versatile tools in our lab for the automatization of low-complexity procedures not requiring full-blown commercial radiochemistry synthesizers, as showcased here for the production of [1-11C]acetate.


Asunto(s)
Acetatos/síntesis química , Radioisótopos de Carbono/metabolismo , Radioquímica/métodos , Acetatos/administración & dosificación , Acetatos/farmacocinética , Animales , Radioisótopos de Carbono/administración & dosificación , Radioisótopos de Carbono/farmacocinética , Ratones , Tomografía de Emisión de Positrones
4.
J Nucl Med ; 55(Supplement 2): 2S-10S, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24819419

RESUMEN

Hybrid PET/MR systems have rapidly progressed from the prototype stage to systems that are increasingly being used in the clinics. This review provides an overview of developments in hybrid PET/MR systems and summarizes the current state of the art in PET/MR instrumentation, correction techniques, and data analysis. The strong magnetic field requires considerable changes in the manner by which PET images are acquired and has led, among others, to the development of new PET detectors, such as silicon photomultipliers. During more than a decade of active PET/MR development, several system designs have been described. The technical background of combined PET/MR systems is explained and related challenges are discussed. The necessity for PET attenuation correction required new methods based on MR data. Therefore, an overview of recent developments in this field is provided. Furthermore, MR-based motion correction techniques for PET are discussed, as integrated PET/MR systems provide a platform for measuring motion with high temporal resolution without additional instrumentation. The MR component in PET/MR systems can provide functional information about disease processes or brain function alongside anatomic images. Against this background, we point out new opportunities for data analysis in this new field of multimodal molecular imaging.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...