Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(14)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39065829

RESUMEN

Long-term patient monitoring is required for detection of episodes of atrial fibrillation, one of the most widespread cardiac pathologies. Today, the most used non-invasive technique is Holter electrocardiographic (ECG) monitoring, which can often prove ineffective because of the short duration of recordings (e.g., one day). Other techniques such as photo-plethysmography are adopted by smartwatches for much longer duration monitoring, but this has the disadvantage of offering only intermittent measurements. This study proposes an Internet of Things (IoT) sensor that can provide a very long period of continuous monitoring. The sensor consists of an ECG-integrated Analog Front End (MAX30003), a microcontroller (STM32F401RE), and an IoT narrowband module (STEVAL-STMODLTE). The instantaneous heart rate is extracted from the ECG recording in real time. At intervals of two minutes, the sequence of inter-beat intervals is transmitted to an IoT cloud platform (ThingSpeak). Settled atrial fibrillation event recognition software runs on the cloud and generates alerts when it recognizes such arrhythmia. Performances of the proposed sensor were evaluated by generating analog ECG signals from a public dataset of ECG signals with atrial fibrillation episodes, the MIT-BIH Atrial Fibrillation Database, each recording lasting approximately 10 h. Software implementing the Lorentz algorithm, one of the best detectors of atrial fibrillation, was implemented on the cloud platform. The accuracy, sensitivity, and specificity in recognizing atrial fibrillation episodes of the proposed system was calculated by comparison with a cardiologist's reference data. Across all patients, the proposed method achieved an accuracy of 0.88, a sensitivity 0.71, and a specificity 0.99. The results obtained suggest that the developed system can continuously record and transmit heart rhythms effectively and efficiently and, in addition, offers considerable performance in recognizing atrial fibrillation episodes in real time.


Asunto(s)
Fibrilación Atrial , Electrocardiografía , Frecuencia Cardíaca , Internet de las Cosas , Procesamiento de Señales Asistido por Computador , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/fisiopatología , Humanos , Frecuencia Cardíaca/fisiología , Electrocardiografía/métodos , Electrocardiografía/instrumentación , Electrocardiografía Ambulatoria/instrumentación , Electrocardiografía Ambulatoria/métodos , Monitoreo Fisiológico/métodos , Monitoreo Fisiológico/instrumentación , Algoritmos
2.
Sensors (Basel) ; 24(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38475062

RESUMEN

Cardiac auscultation is an essential part of physical examination and plays a key role in the early diagnosis of many cardiovascular diseases. The analysis of phonocardiography (PCG) recordings is generally based on the recognition of the main heart sounds, i.e., S1 and S2, which is not a trivial task. This study proposes a method for an accurate recognition and localization of heart sounds in Forcecardiography (FCG) recordings. FCG is a novel technique able to measure subsonic vibrations and sounds via small force sensors placed onto a subject's thorax, allowing continuous cardio-respiratory monitoring. In this study, a template-matching technique based on normalized cross-correlation was used to automatically recognize heart sounds in FCG signals recorded from six healthy subjects at rest. Distinct templates were manually selected from each FCG recording and used to separately localize S1 and S2 sounds, as well as S1-S2 pairs. A simultaneously recorded electrocardiography (ECG) trace was used for performance evaluation. The results show that the template matching approach proved capable of separately classifying S1 and S2 sounds in more than 96% of all heartbeats. Linear regression, correlation, and Bland-Altman analyses showed that inter-beat intervals were estimated with high accuracy. Indeed, the estimation error was confined within 10 ms, with negligible impact on heart rate estimation. Heart rate variability (HRV) indices were also computed and turned out to be almost comparable with those obtained from ECG. The preliminary yet encouraging results of this study suggest that the template matching approach based on normalized cross-correlation allows very accurate heart sounds localization and inter-beat intervals estimation.


Asunto(s)
Ruidos Cardíacos , Humanos , Ruidos Cardíacos/fisiología , Fonocardiografía , Corazón/fisiología , Auscultación Cardíaca , Electrocardiografía , Frecuencia Cardíaca
3.
Sensors (Basel) ; 23(19)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37836942

RESUMEN

Cardio-mechanical monitoring techniques, such as Seismocardiography (SCG) and Gyrocardiography (GCG), have received an ever-growing interest in recent years as potential alternatives to Electrocardiography (ECG) for heart rate monitoring. Wearable SCG and GCG devices based on lightweight accelerometers and gyroscopes are particularly appealing for continuous, long-term monitoring of heart rate and its variability (HRV). Heartbeat detection in cardio-mechanical signals is usually performed with the support of a concurrent ECG lead, which, however, limits their applicability in standalone cardio-mechanical monitoring applications. The complex and variable morphology of SCG and GCG signals makes the ECG-free heartbeat detection task quite challenging; therefore, only a few methods have been proposed. Very recently, a template matching method based on normalized cross-correlation (NCC) has been demonstrated to provide very accurate detection of heartbeats and estimation of inter-beat intervals in SCG and GCG signals of pathological subjects. In this study, the accuracy of HRV indices obtained with this template matching method is evaluated by comparison with ECG. Tests were performed on two public datasets of SCG and GCG signals from healthy and pathological subjects. Linear regression, correlation, and Bland-Altman analyses were carried out to evaluate the agreement of 24 HRV indices obtained from SCG and GCG signals with those obtained from ECG signals, simultaneously acquired from the same subjects. The results of this study show that the NCC-based template matching method allowed estimating HRV indices from SCG and GCG signals of healthy subjects with acceptable accuracy. On healthy subjects, the relative errors on time-domain indices ranged from 0.25% to 15%, on frequency-domain indices ranged from 10% to 20%, and on non-linear indices were within 8%. The estimates obtained on signals from pathological subjects were affected by larger errors. Overall, GCG provided slightly better performances as compared to SCG, both on healthy and pathological subjects. These findings provide, for the first time, clear evidence that monitoring HRV via SCG and GCG sensors without concurrent ECG is feasible with the NCC-based template matching method for heartbeat detection.


Asunto(s)
Electrocardiografía , Corazón , Humanos , Frecuencia Cardíaca/fisiología , Corazón/fisiología , Monitoreo Fisiológico , Determinación de la Frecuencia Cardíaca
4.
Sensors (Basel) ; 23(13)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37448046

RESUMEN

A heartbeat generates tiny mechanical vibrations, mainly due to the opening and closing of heart valves. These vibrations can be recorded by accelerometers and gyroscopes applied on a subject's chest. In particular, the local 3D linear accelerations and 3D angular velocities of the chest wall are referred to as seismocardiograms (SCG) and gyrocardiograms (GCG), respectively. These signals usually exhibit a low signal-to-noise ratio, as well as non-negligible amplitude and morphological changes due to changes in posture and the sensors' location, respiratory activity, as well as other sources of intra-subject and inter-subject variability. These factors make heartbeat detection a complex task; therefore, a reference electrocardiogram (ECG) lead is usually acquired in SCG and GCG studies to ensure correct localization of heartbeats. Recently, a template matching technique based on cross correlation has proven to be particularly effective in recognizing individual heartbeats in SCG signals. This study aims to verify the performance of this technique when applied on GCG signals. Tests were conducted on a public database consisting of SCG, GCG, and ECG signals recorded synchronously on 100 patients with valvular heart diseases. The results show that the template matching technique identified heartbeats in GCG signals with a sensitivity and positive predictive value (PPV) of 87% and 92%, respectively. Regression, correlation, and Bland-Altman analyses carried out on inter-beat intervals obtained from GCG and ECG (assumed as reference) reported a slope of 0.995, an intercept of 4.06 ms (R2 > 0.99), a Pearson's correlation coefficient of 0.9993, and limits of agreement of about ±13 ms with a negligible bias. A comparison with the results of a previous study obtained on SCG signals from the same database revealed that GCG enabled effective cardiac monitoring in significantly more patients than SCG (95 vs. 77). This result suggests that GCG could ensure more robust and reliable cardiac monitoring in patients with heart diseases with respect to SCG.


Asunto(s)
Procesamiento de Señales Asistido por Computador , Pared Torácica , Humanos , Frecuencia Cardíaca , Electrocardiografía , Monitoreo Fisiológico
5.
Sensors (Basel) ; 23(10)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37430606

RESUMEN

Cardiac monitoring can be performed by means of an accelerometer attached to a subject's chest, which produces the Seismocardiography (SCG) signal. Detection of SCG heartbeats is commonly carried out by taking advantage of a simultaneous electrocardiogram (ECG). SCG-based long-term monitoring would certainly be less obtrusive and easier to implement without an ECG. Few studies have addressed this issue using a variety of complex approaches. This study proposes a novel approach to ECG-free heartbeat detection in SCG signals via template matching, based on normalized cross-correlation as heartbeats similarity measure. The algorithm was tested on the SCG signals acquired from 77 patients with valvular heart diseases, available from a public database. The performance of the proposed approach was assessed in terms of sensitivity and positive predictive value (PPV) of the heartbeat detection and accuracy of inter-beat intervals measurement. Sensitivity and PPV of 96% and 97%, respectively, were obtained by considering templates that included both systolic and diastolic complexes. Regression, correlation, and Bland-Altman analyses carried out on inter-beat intervals reported slope and intercept of 0.997 and 2.8 ms (R2 > 0.999), as well as non-significant bias and limits of agreement of ±7.8 ms. The results are comparable or superior to those achieved by far more complex algorithms, also based on artificial intelligence. The low computational burden of the proposed approach makes it suitable for direct implementation in wearable devices.


Asunto(s)
Inteligencia Artificial , Electrocardiografía , Humanos , Frecuencia Cardíaca , Algoritmos , Bases de Datos Factuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA