Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Crohns Colitis ; 17(12): 1988-2001, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-37462681

RESUMEN

IFNγ-producing ex-Th17 cells ['Th1/17'] were shown to play a key pathogenic role in experimental colitis and are abundant in the intestine. Here, we identified and characterised a novel, potentially colitogenic subset of Th17 cells in the intestine of patients with Crohn's disease [CD]. Human Th17 cells expressing CCR5 ['pTh17'] co-expressed T-bet and RORC/γt and produced very high levels of IL-17, together with IFN-γ. They had a gene signature of Th17 effector cells and were distinct from established Th1/17 cells. pTh17 cells, but not Th1/17 cells, were associated with intestinal inflammation in CD, and decreased upon successful anti-TNF therapy with infliximab. Conventional CCR5[-]Th17 cells differentiated to pTh17 cells with IL-23 in vitro. Moreover, anti-IL-23 therapy with risankizumab strongly reduced pTh17 cells in the intestine. Importantly, intestinal pTh17 cells were selectively activated by adherent-invasive Escherichia coli [AIEC], but not by a commensal/probiotic E. coli strain. AIEC induced high levels of IL-23 and RANTES from dendritic cells [DC]. Intestinal CCR5+Th1/17 cells responded instead to cytomegalovirus and were reduced in ulcerative colitis [UC], suggesting an unexpected protective role. In conclusion, we identified an IL-23-inducible subset of human intestinal Th17 cells. pTh17 cells produced high levels of pro-inflammatory cytokines, were selectively associated with intestinal inflammation in CD, and responded to CD-associated AIEC, suggesting a key colitogenic role.


Asunto(s)
Enfermedad de Crohn , Infecciones por Escherichia coli , Humanos , Enfermedad de Crohn/patología , Escherichia coli , Células Th17/patología , Inhibidores del Factor de Necrosis Tumoral , Intestinos/patología , Inflamación/patología , Infecciones por Escherichia coli/complicaciones , Infecciones por Escherichia coli/patología , Interleucina-23 , Mucosa Intestinal/patología , Adhesión Bacteriana
2.
Microorganisms ; 10(6)2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35744681

RESUMEN

Staphylococcus epidermidis is an opportunistic pathogen and a frequent cause of nosocomial infections. In this work, we show that, among 51 S. epidermidis isolates from an Italian hospital, only a minority displayed biofilm formation, regardless of their isolation source (peripheral blood, catheter, or skin wounds); however, among the biofilm-producing isolates, those from catheters were the most efficient in biofilm formation. Interestingly, most isolates including strong biofilm producers displayed production levels of PIA (polysaccharide intercellular adhesin), the main S. epidermidis extracellular polysaccharide, similar to reference S. epidermidis strains classified as non-biofilm formers, and much lower than those classified as intermediate or high biofilm formers, possibly suggesting that high levels of PIA production do not confer a particular advantage for clinical isolates. Finally, while for the reference S. epidermidis strains the biofilm production clearly correlated with the decreased sensitivity to antibiotics, in particular, protein synthesis inhibitors, in our clinical isolates, such positive correlation was limited to tetracycline. In contrast, we observed an inverse correlation between biofilm formation and the minimal inhibitory concentrations for levofloxacin and teicoplanin. In addition, in growth conditions favoring PIA production, the biofilm-forming isolates showed increased sensitivity to daptomycin, clindamycin, and erythromycin, with increased tolerance to the trimethoprim/sulfamethoxazole association. The lack of direct correlation between the biofilm production and increased tolerance to antibiotics in S. epidermidis isolates from a clinical setting would suggest, at least for some antimicrobials, the possible existence of a trade-off between the production of biofilm determinants and antibiotic resistance.

3.
Microorganisms ; 10(3)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35336113

RESUMEN

In Crohn's disease (CD) patients, the adherent-invasive Escherichia coli (AIEC) pathovar contributes to the chronic inflammation typical of the disease via its ability to invade gut epithelial cells and to survive in macrophages. We show that, in the AIEC strain LF82, inactivation of the pyrD gene, encoding dihydroorotate dehydrogenase (DHOD), an enzyme of the de novo pyrimidine biosynthetic pathway, completely abolished its ability of to grow in a macrophage environment-mimicking culture medium. In addition, pyrD inactivation reduced flagellar motility and strongly affected biofilm formation by downregulating transcription of both type 1 fimbriae and curli subunit genes. Thus, the pyrD gene appears to be essential for several cellular processes involved in AIEC virulence. Interestingly, vidofludimus (VF), a DHOD inhibitor, has been proposed as an effective drug in CD treatment. Despite displaying a potentially similar binding mode for both human and E. coli DHOD in computational molecular docking experiments, VF showed no activity on either growth or virulence-related processes in LF82. Altogether, our results suggest that the crucial role played by the pyrD gene in AIEC virulence, and the presence of structural differences between E. coli and human DHOD allowing for the design of specific inhibitors, make E. coli DHOD a promising target for therapeutical strategies aiming at counteracting chronic inflammation in CD by acting selectively on its bacterial triggers.

5.
Pharmacol Res ; 161: 105288, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33160070

RESUMEN

Leishmaniases are severe vector-borne diseases affecting humans and animals, caused by Leishmania protozoans. Over one billion people and millions of dogs live in endemic areas for leishmaniases and are at risk of infection. Immune polarization plays a major role in determining the outcome of Leishmania infections: hosts displaying M1-polarized macrophages are protected, while those biased on the M2 side acquire a chronic infection that could develop into a deadly disease. The identification of the factors involved in M1 polarization is essential for the design of therapeutic and prophylactic interventions, including vaccines. Infection by the filarial nematode Dirofilaria immitis could be one of the factors that interfere with leishmaniasis in dogs. Indeed, filarial nematodes induce a partial skew of the immune response towards M1, likely caused by their bacterial endosymbionts, Wolbachia. Here we have examined the potential of AsaiaWSP, a bacterium engineered for the expression of the Wolbachia surface protein (WSP), as an inductor of M1 macrophage activation and Leishmania killing. Macrophages stimulated with AsaiaWSP displayed a strong leishmanicidal activity, comparable to that determined by the choice-drug amphotericin B. Additionally, AsaiaWSP determined the expression of markers of classical macrophage activation, including M1 cytokines, ROS and NO, and an increase in phagocytosis activity. Asaia not expressing WSP also induced macrophage activation, although at a lower extent compared to AsaiaWSP. In summary, the results of the present study confirm the immunostimulating properties of WSP highlighting a potential therapeutic efficacy against Leishmania parasites. Furthermore, Asaia was designed as a delivery system for WSP, thus developing a novel type of immunomodulating agent, worthy of being investigated for immuno-prophylaxis and -therapy of leishmaniases and other diseases that could be subverted by M1 macrophage activation.


Asunto(s)
Acetobacteraceae/inmunología , Proteínas de la Membrana Bacteriana Externa/inmunología , Inmunidad Innata , Leishmania infantum/inmunología , Vacunas contra la Leishmaniasis/inmunología , Activación de Macrófagos , Macrófagos/microbiología , Macrófagos/parasitología , Acetobacteraceae/genética , Acetobacteraceae/metabolismo , Animales , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Línea Celular , Citocinas/metabolismo , Vectores Genéticos , Interacciones Huésped-Parásitos , Leishmania infantum/crecimiento & desarrollo , Leishmania infantum/ultraestructura , Vacunas contra la Leishmaniasis/genética , Vacunas contra la Leishmaniasis/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Óxido Nítrico/metabolismo , Fagocitosis , Fenotipo , Especies Reactivas de Oxígeno/metabolismo , Vacunas de ADN/inmunología
6.
Mar Drugs ; 18(8)2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32781644

RESUMEN

Collagen-based skin-like scaffolds (CBSS) are promising alternatives to skin grafts to repair wounds and injuries. In this work, we propose that the common marine invertebrate sea urchin represents a promising and eco-friendly source of native collagen to develop innovative CBSS for skin injury treatment. Sea urchin food waste after gonad removal was here used to extract fibrillar glycosaminoglycan (GAG)-rich collagen to produce bilayer (2D + 3D) CBSS. Microstructure, mechanical stability, permeability to water and proteins, ability to exclude bacteria and act as scaffolding for fibroblasts were evaluated. Our data show that the thin and dense 2D collagen membrane strongly reduces water evaporation (less than 5% of water passes through the membrane after 7 days) and protein diffusion (less than 2% of BSA passes after 7 days), and acts as a barrier against bacterial infiltration (more than 99% of the different tested bacterial species is retained by the 2D collagen membrane up to 48 h), thus functionally mimicking the epidermal layer. The thick sponge-like 3D collagen scaffold, structurally and functionally resembling the dermal layer, is mechanically stable in wet conditions, biocompatible in vitro (seeded fibroblasts are viable and proliferate), and efficiently acts as a scaffold for fibroblast infiltration. Thus, thanks to their chemical and biological properties, CBSS derived from sea urchins might represent a promising, eco-friendly, and economically sustainable biomaterial for tissue regenerative medicine.


Asunto(s)
Colágenos Fibrilares/farmacología , Fibroblastos/fisiología , Medicina Regenerativa , Erizos de Mar/química , Alimentos Marinos , Piel Artificial , Andamios del Tejido , Residuos , Animales , Técnicas de Cultivo de Célula , Línea Celular , Proliferación Celular , Supervivencia Celular , Cricetinae , Colágenos Fibrilares/química , Colágenos Fibrilares/aislamiento & purificación , Fibroblastos/metabolismo , Manipulación de Alimentos
7.
Cells ; 9(8)2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32752244

RESUMEN

Hypersecretion of proinflammatory cytokines and dysregulated activation of the IL-23/Th17 axis in response to intestinal microbiota dysbiosis are key factors in the pathogenesis of inflammatory bowel diseases (IBD). In this work, we studied how Lactobacillus and Bifidobacterium strains affect AIEC-LF82 virulence mechanisms and the consequent inflammatory response linked to the CCR6-CCL20 and IL-23/Th17 axes in Crohn's disease (CD) and ulcerative colitis (UC) patients. All Lactobacillus and Bifidobacterium strains significantly reduced the LF82 adhesion and persistence within HT29 intestinal epithelial cells, inhibiting IL-8 secretion while not affecting the CCR6-CCL20 axis. Moreover, they significantly reduced LF82 survival within macrophages and dendritic cells, reducing the secretion of polarizing cytokines related to the IL-23/Th17 axis, both in healthy donors (HD) and UC patients. In CD patients, however, only B. breve Bbr8 strain was able to slightly reduce the LF82 persistence within dendritic cells, thus hampering the IL-23/Th17 axis. In addition, probiotic strains were able to modulate the AIEC-induced inflammation in HD, reducing TNF-α and increasing IL-10 secretion by macrophages, but failed to do so in IBD patients. Interestingly, the probiotic strains studied in this work were all able to interfere with the IL-23/Th17 axis in UC patients, but not in CD patients. The different interaction mechanisms of probiotic strains with innate immune cells from UC and CD patients compared to HD suggest that testing on CD-derived immune cells may be pivotal for the identification of novel probiotic strains that could be effective also for CD patients.


Asunto(s)
Bifidobacterium/patogenicidad , Colitis Ulcerosa/microbiología , Escherichia coli/patogenicidad , Interleucina-23/metabolismo , Lactobacillus/patogenicidad , Probióticos/uso terapéutico , Colitis Ulcerosa/inmunología , Humanos , Probióticos/farmacología
8.
Pharmacol Res ; 159: 104962, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32480001

RESUMEN

This review tackles the concept of the evolutionary mismatch, in relation with the reduction of the prevalence of the so-called "dirty old friends". These formed the variegated community of parasites and microorganisms, either prokaryotic or eukaryotic, that, over long evolutionary times, co-evolved with humans and their ancestors, inhabiting their digestive tracts, and other body districts. This community of microbial symbionts and metazoan parasites is thought to have evolved a complex network of inter-independence with the host, in particular in relation with their immune stimulating capacity, and with the consequent adaptation of the host immune response to this chronic stimulation. Strictly related to this evolutionary mismatch, the hygiene hypothesis, proposed by David Strachan in 1989, foresees that the increase in the incidence of inflammatory and autoimmune disorders during the twentieth century has been caused by the reduced exposure to parasites and microorganisms, especially in industrialized countries. Among these pathologies, inflammatory bowel diseases (IBDs) occupy a prominent role. From these premises, this review summarizes current knowledge on how variations in the composition of the gut bacterial microbiota, as well as its interactions with fungal communities, influence the overall immune balance, favouring or counteracting gut inflammation in IBDs. Additionally, the effect of worm parasites, either directly on the immune balance, or indirectly, through the modulation of bacterial and fungal microbiota, will be addressed. Finally, we will review a series of studies related to the use of molecules derived from parasitic worms and fungi, which hold the potential to be developed as postbiotics for the treatment of IBDs.


Asunto(s)
Hongos/patogenicidad , Hipótesis de la Higiene , Enfermedades Inflamatorias del Intestino/microbiología , Enfermedades Inflamatorias del Intestino/parasitología , Intestinos/microbiología , Intestinos/parasitología , Parásitos/patogenicidad , Animales , Evolución Biológica , Hongos/inmunología , Microbioma Gastrointestinal , Interacciones Huésped-Parásitos , Humanos , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/terapia , Intestinos/inmunología , Parásitos/inmunología , Factores de Riesgo
9.
Microorganisms ; 8(6)2020 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-32486329

RESUMEN

LpxT is an inner membrane protein that transfers a phosphate group from the essential lipid undecaprenyl pyrophosphate (C-55PP) to the lipid A moiety of lipopolysaccharide, generating a lipid A tris-phosphorylated species. The protein is encoded by the non-essential lpxT gene, which is conserved in distantly related Gram-negative bacteria. In this work, we investigated the phenotypic effect of lpxT ectopic expression from a plasmid in Escherichia coli. We found that lpxT induction inhibited cell division and led to the formation of elongated cells, mostly with absent or altered septa. Moreover, the cells became sensitive to detergents and to hypo-osmotic shock, indicating that they had cell envelope defects. These effects were not due to lipid A hyperphosphorylation or C-55PP sequestering, but most likely to defective lipopolysaccharide transport. Indeed, lpxT overexpression in mutants lacking the L,D-transpeptidase LdtD and LdtE, which protect cells with outer membrane defects from osmotic lysis, caused cell envelope defects. Moreover, we found that pyrophosphorylated lipid A was also produced in a lpxT deletion mutant, indicating that LpxT is not the only protein able to perform such lipid A modification in E. coli.

10.
J Crohns Colitis ; 14(9): 1190-1201, 2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32100016

RESUMEN

BACKGROUND AND AIMS: Vedolizumab [VDZ] is a monoclonal antibody directed against the α4ß7 integrin heterodimer, approved for patients with inflammatory bowel diseases [IBD]. This study aimed at identifying immunological variables associated with response to vedolizumab in patients with ulcerative colitis [UC] and Crohn's disease [CD]. METHODS: This is a phase IV explorative prospective interventional trial. IBD patients received open-label VDZ at Weeks 0, 2, 6, and 14. Patients with a clinical response at Week 14 were maintained with VDZ up to Week 54. At Weeks 0 and 14, their peripheral blood was obtained and endoscopy with biopsies was performed. The Week 14 clinical response and remission, Week 54 clinical remission, and Week 14 endoscopic response were evaluated as endpoints of the study. The expression of surface markers, chemokine receptors, and α4ß7 heterodimer in peripheral blood and lamina propria lymphocytes was assessed by flow cytometry. A panel of soluble mediators was assessed in sera at baseline and at Week 14 by 45-plex. RESULTS: A total of 38 IBD patients [20 UC, 18 CD] were included in the study. At Week 14, the clinical response and remission rates were 87% and 66%, respectively. Higher baseline levels of circulating memory Th1 cells were strongly associated with clinical response at Week 14 [p = 0.0001], whereas reduced baseline levels of lamina propria memory Th17 and Th1/17 cells were associated with endoscopic response. Immunological clusters were found to be independently associated with vedolizumab outcomes at multivariable analysis. A panel of soluble markers, including IL17A, TNF, CXCL1, CCL19 for CD and G-CSF and IL7 for UC, associated with vedolizumab-induced Week 54 clinical remission. CONCLUSIONS: The results of this exploratory study uncovered a panel of circulating and mucosal immunological variables associated with response to treatment with vedolizumab.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Colitis Ulcerosa , Enfermedad de Crohn , Integrinas/antagonistas & inhibidores , Mucosa Intestinal/patología , Inducción de Remisión/métodos , Adulto , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anticuerpos Monoclonales Humanizados/efectos adversos , Anticuerpos Monoclonales Humanizados/inmunología , Biopsia/métodos , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/inmunología , Colitis Ulcerosa/patología , Colonoscopía/métodos , Enfermedad de Crohn/tratamiento farmacológico , Enfermedad de Crohn/inmunología , Enfermedad de Crohn/patología , Citocinas/análisis , Citocinas/clasificación , Duración de la Terapia , Femenino , Fármacos Gastrointestinales/administración & dosificación , Fármacos Gastrointestinales/efectos adversos , Fármacos Gastrointestinales/inmunología , Humanos , Italia , Masculino , Monitorización Inmunológica/métodos , Evaluación de Procesos y Resultados en Atención de Salud , Subgrupos de Linfocitos T/patología
11.
Front Immunol ; 9: 1387, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29971065

RESUMEN

Hematopoietic stem and progenitor cells (HSPCs) are multipotent stem cells that have been harnessed as a curative therapy for patients with hematological malignancies. Notably, the discovery that HSPCs are endowed with immunoregulatory properties suggests that HSPC-based therapeutic approaches may be used to treat autoimmune diseases. Indeed, infusion with HSPCs has shown promising results in the treatment of type 1 diabetes (T1D) and remains the only "experimental therapy" that has achieved a satisfactory rate of remission (nearly 60%) in T1D. Patients with newly diagnosed T1D have been successfully reverted to normoglycemia by administration of autologous HSPCs in association with a non-myeloablative immunosuppressive regimen. However, this approach is hampered by a high incidence of adverse effects linked to immunosuppression. Herein, we report that while the use of autologous HSPCs is capable of improving C-peptide production in patients with T1D, ex vivo modulation of HSPCs with prostaglandins (PGs) increases their immunoregulatory properties by upregulating expression of the immune checkpoint-signaling molecule PD-L1. Surprisingly, CXCR4 was upregulated as well, which could enhance HSPC trafficking toward the inflamed pancreatic zone. When tested in murine and human in vitro autoimmune assays, PG-modulated HSPCs were shown to abrogate the autoreactive T cell response. The use of PG-modulated HSPCs may thus provide an attractive and novel treatment of autoimmune diabetes.

12.
Front Microbiol ; 9: 964, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29867868

RESUMEN

Adherent-invasive Escherichia coli (AIEC) strains are overrepresented in the dysbiotic microbiota of Crohn's disease (CD) patients, and contribute to the onset of the chronic inflammation typical of the disease. However, the effects of anti-inflammatory drugs used for CD treatment on AIEC virulence have not yet been investigated. In this report, we show that exposure of AIEC LF82 strain to amino-6-mercaptopurine (6-MP) riboside, one of the most widely used anti-inflammatory drugs in CD, impairs its ability to adhere to, and consequently to invade, human epithelial cells. Notably, phagocytosis of LF82 treated with 6-MP by human macrophages is also reduced, suggesting that 6-MP affects AIEC cell surface determinants involved both in interaction with epithelial cells and in uptake by macrophages. Since a main target of 6-MP in bacterial cells is the inhibition of the important signal molecule c-di-GMP, we also tested whether perturbations in cAMP, another major signaling pathway in E. coli, might have similar effects on interactions with human cells. To this aim, we grew LF82 in the presence of glucose, which leads to inhibition of cAMP synthesis. Growth in glucose-supplemented medium resulted in a reduction in AIEC adhesion to epithelial cells and uptake by macrophages. Consistent with these results, both 6-MP and glucose can affect expression of cell adhesion-related genes, such as the csg genes, encoding thin aggregative fimbriae (curli). In addition, glucose strongly inhibits expression of the fim operon, encoding type 1 pili, a known AIEC determinant for adhesion to human cells. To further investigate whether 6-MP can indeed inhibit c-di-GMP signaling in AIEC, we performed biofilm and motility assays and determination of extracellular polysaccharides. 6-MP clearly affected biofilm formation and cellulose production, but also, unexpectedly, reduced cell motility, itself an important virulence factor for AIEC. Our results provide strong evidence that 6-MP can affect AIEC-host cell interaction by acting on the bacterial cell, thus strengthening the hypothesis that mercaptopurines might promote CD remission also by affecting gut microbiota composition and/or physiology, and suggesting that novel drugs targeting bacterial virulence and signaling might be effective in preventing chronic inflammation in CD.

13.
J Crohns Colitis ; 12(8): 981-992, 2018 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-29697763

RESUMEN

BACKGROUND AND AIMS: T helper 17 [Th17] cells are crucially involved in the immunopathogenesis of inflammatory bowel diseases in humans. Nevertheless, pharmacological blockade of interleukin 17A [IL17A], the Th17 signature cytokine, yielded negative results in patients with Crohn's disease [CD], and attempts to elucidate the determinants of Th17 cells' pathogenicity in the gut have so far proved unsuccessful. Here, we aimed to identify and functionally validate the pathogenic determinants of intestinal IL-17-producing T cells. METHODS: In vivo-generated murine intestinal IL-17-producing T cells were adoptively transferred into immunodeficient Rag1-/- recipients to test their pathogenicity. Human IL-17, IFNγ/IL-17, and IFNγ actively secreting T cell clones were generated from lamina propria lymphocytes of CD patients. The pathogenic activity of intestinal IL-17-producing T cells against the intestinal epithelium was evaluated. RESULTS: IL-17-producing cells with variable colitogenic activity can be generated in vivo using different experimental colitis models. The pathogenicity of IL-17-secreting cells was directly dependent on their IFNγ secretion capacity, as demonstrated by the reduced colitogenic activity of IL-17-secreting cells isolated from IFNγ-/- mice. Moreover, IFNγ production is a distinguished attribute of CD-derived lamina propria Th17 cells. IFNγ secretion by CD-derived IL-17-producing intestinal clones is directly implicated in the epithelial barrier disruption through the modulation of tight junction proteins. CONCLUSIONS: Intestinal Th17 cell pathogenicity is associated with IFNγ production, which directly affects intestinal permeability through the disruption of epithelial tight junctions.


Asunto(s)
Colitis/inmunología , Enfermedad de Crohn/patología , Interferón gamma/metabolismo , Mucosa Intestinal/patología , Células Th17/inmunología , Células Th17/metabolismo , Adulto , Anciano , Animales , Células Clonales/inmunología , Células Clonales/metabolismo , Enfermedad de Crohn/inmunología , Enfermedad de Crohn/metabolismo , Femenino , Proteínas de Homeodominio/genética , Humanos , Interferón gamma/genética , Interleucina-17/metabolismo , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Permeabilidad , Células TH1/metabolismo , Uniones Estrechas/metabolismo
14.
J Allergy Clin Immunol ; 142(5): 1537-1547.e8, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29369775

RESUMEN

BACKGROUND: IL-10 is an anti-inflammatory cytokine required for intestinal immune homeostasis. It mediates suppression of T-cell responses by type 1 regulatory T (TR1) cells but is also produced by CD25+ regulatory T (Treg) cells. OBJECTIVE: We aimed to identify and characterize human intestinal TR1 cells and to investigate whether they are a relevant cellular source of IL-10 in patients with inflammatory bowel diseases (IBDs). METHODS: CD4+ T cells isolated from the intestinal lamina propria of human subjects and mice were analyzed for phenotype, cytokine production, and suppressive capacities. Intracellular IL-10 expression by CD4+ T-cell subsets in the inflamed guts of patients with IBD (Crohn disease or ulcerative colitis) was compared with that in cells from noninflamed control subjects. Finally, the effects of proinflammatory cytokines on T-cell IL-10 expression were analyzed, and IL-1ß and IL-23 responsiveness was assessed. RESULTS: Intestinal TR1 cells could be identified by coexpression of CCR5 and programmed cell death protein 1 (PD-1) in human subjects and mice. CCR5+PD-1+ TR1 cells expressed IFN-γ and efficiently suppressed T-cell proliferation and transfer colitis. Intestinal IFN-γ+ TR1 cells, but not IL-7 receptor-positive TH cells or CD25+ Treg cells, showed lower IL-10 expression in patients with IBDs. TR1 cells were responsive to IL-23, and IFN-γ+ TR1 cells downregulated IL-10 with IL-1ß and IL-23. Conversely, CD25+ Treg cells expressed higher levels of IL-1 receptor but showed stable IL-10 expression. CONCLUSIONS: We provide the first ex vivo characterization of human intestinal TR1 cells. Selective downregulation of IL-10 by IFN-γ+ TR1 cells in response to proinflammatory cytokines is likely to drive excessive intestinal inflammation in patients with IBDs.


Asunto(s)
Citocinas/inmunología , Enfermedades Inflamatorias del Intestino/inmunología , Mucosa Intestinal/inmunología , Receptor de Muerte Celular Programada 1/inmunología , Receptores CCR5/inmunología , Linfocitos T Reguladores/inmunología , Adulto , Anciano , Animales , Células Cultivadas , Neoplasias del Colon/inmunología , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Adulto Joven
15.
Int J Mol Sci ; 18(11)2017 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-29135920

RESUMEN

Burkholderia cenocepacia is an important opportunistic pathogen in cystic fibrosis (CF) patients, and has also been isolated from natural environments. In previous work, we explored the virulence and pathogenic potential of environmental B. cenocepacia strains and demonstrated that they do not differ from clinical strains in some pathogenic traits. Here, we investigated the ability of the environmental B. cenocepacia Mex1 strain, isolated from the maize rhizosphere, to persist and increase its virulence after serial passages in a mouse model of chronic infection. B. cenocepacia Mex1 strain, belonging to the recA lineage IIIA, was embedded in agar beads and challenged into the lung of C57Bl/6 mice. The mice were sacrificed after 28 days from infection and their lungs were tested for bacterial loads. Agar beads containing the pool of B. cenocepacia colonies from the four sequential passages were used to infect the mice. The environmental B. cenocepacia strain showed a low incidence of chronic infection after the first passage; after the second, third and fourth passages in mice, its ability to establish chronic infection increased significantly and progressively up to 100%. Colonial morphology analysis and genetic profiling of the Mex1-derived clones recovered after the fourth passage from infected mice revealed that they were indistinguishable from the challenged strain both at phenotypic and genetic level. By testing the virulence of single clones in the Galleria mellonella infection model, we found that two Mex1-derived clones significantly increased their pathogenicity compared to the parental Mex1 strain and behaved similarly to the clinical and epidemic B. cenocepacia LMG16656T. Our findings suggest that serial passages of the environmental B. cenocepacia Mex1 strain in mice resulted in an increased ability to determine chronic lung infection and the appearance of clonal variants with increased virulence in non-vertebrate hosts.


Asunto(s)
Burkholderia cenocepacia/fisiología , Microbiología Ambiental , Aptitud Genética , Infecciones del Sistema Respiratorio/microbiología , Adaptación Fisiológica , Animales , Carga Bacteriana , Biopelículas , Burkholderia cenocepacia/patogenicidad , Enfermedad Crónica , Células Clonales , Recuento de Colonia Microbiana , Estimación de Kaplan-Meier , Larva/microbiología , Pulmón/microbiología , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Fenotipo , Técnica del ADN Polimorfo Amplificado Aleatorio , Pase Seriado , Virulencia
16.
Arthritis Res Ther ; 19(1): 103, 2017 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-28526072

RESUMEN

BACKGROUND: The aim was to investigate CD4+T-cell subsets, immune cells and their cytokine profiles in blood and synovial compartments in rheumatoid arthritis (RA) and inflammatory osteoarthritis (OA) to define specific immune signatures. METHODS: Peripheral blood, synovial fluid (SF) and synovial membranes (SM) of RA and OA patients were analyzed. CD4+T-cell subset frequencies were determined by flow cytometry, and cytokine concentrations in serum and SF were measured by ELISA. RESULTS: In peripheral blood, OA patients had altered frequencies of regulatory T-cell subsets, and higher frequencies of Th17 and of Th1/17 cells than RA patients. In the synovial compartment of OA patients, conventional Th17 cells were largely excluded, while Th1/17 cells were enriched and more frequent than in RA patients. Conversely, in the synovial compartment of RA patients, regulatory T cells and Tfh cells were enriched and more frequent then in OA patients. IL-17 and Blys were increased both in serum and SF of RA patients, and correlated with autoantibodies and disease activity. Notably, Blys levels were already significantly elevated in RA patients with low disease activity score in 28 joints (DAS28) and without autoantibody positivity. CONCLUSIONS: Although patients with inflammatory OA have immune activation in the synovial compartment, they display different T-cell subset frequencies and cytokine profiles. Soluble mediators such as Blys might help to discriminate mild clinical forms of RA from inflammatory OA particularly at the onset of the disease.


Asunto(s)
Artritis Reumatoide/diagnóstico , Linfocitos T CD4-Positivos/inmunología , Osteoartritis/diagnóstico , Subgrupos de Linfocitos T/inmunología , Adulto , Anciano , Artritis Reumatoide/inmunología , Biomarcadores/análisis , Citocinas/análisis , Citocinas/biosíntesis , Femenino , Humanos , Masculino , Persona de Mediana Edad , Osteoartritis/inmunología , Líquido Sinovial/inmunología , Membrana Sinovial/inmunología
17.
Trends Immunol ; 38(7): 498-512, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28549714

RESUMEN

Multiple sclerosis (MS) is a T cell driven autoimmune disease of the central nervous system (CNS). Despite its association with Epstein-Barr Virus (EBV), how viral infections promote MS remains unclear. However, there is increasing evidence that the CNS is continuously surveyed by virus-specific T cells, which protect against reactivating neurotropic viruses. Here, we discuss how viral infections could lead to the breakdown of self-tolerance in genetically predisposed individuals, and how the reactivations of viruses in the CNS could induce the recruitment of both autoaggressive and virus-specific T cell subsets, causing relapses and progressive disability. A disturbed immune surveillance in MS would explain several experimental findings, and has important implications for prognosis and therapy.


Asunto(s)
Infecciones por Virus de Epstein-Barr/virología , Herpesvirus Humano 4/inmunología , Interacciones Huésped-Patógeno/inmunología , Vigilancia Inmunológica , Imitación Molecular/inmunología , Esclerosis Múltiple/virología , Movimiento Celular , Sistema Nervioso Central/inmunología , Sistema Nervioso Central/virología , Citocinas/genética , Citocinas/inmunología , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/inmunología , Regulación de la Expresión Génica , Interacción Gen-Ambiente , Predisposición Genética a la Enfermedad , Herpesvirus Humano 4/patogenicidad , Humanos , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/inmunología , Receptores de Citocinas/genética , Receptores de Citocinas/inmunología , Células TH1/inmunología , Células TH1/virología , Células Th17/inmunología , Células Th17/virología
18.
J Allergy Clin Immunol ; 140(3): 797-808, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28237728

RESUMEN

BACKGROUND: Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) that is caused by autoreactive T cells and associated with viral infections. However, the phenotype of pathogenic T cells in peripheral blood remains to be defined, and how viruses promote MS is debated. OBJECTIVE: We aimed to identify and characterize potentially pathogenic autoreactive T cells, as well as protective antiviral T cells, in patients with MS. METHODS: We analyzed CD4+ helper T-cell subsets from peripheral blood or cerebrospinal fluid for cytokine production, gene expression, plasticity, homing potentials, and their reactivity to self-antigens and viral antigens in healthy subjects and patients with MS. Moreover, we monitored their frequencies in untreated and fingolimod- or natalizumab-treated patients with MS. RESULTS: TH1/TH17 central memory (TH1/TH17CM) cells were selectively increased in peripheral blood of patients with relapsing-remitting MS with a high disease score. TH1/TH17CM cells were closely related to conventional TH17 cells but had more pathogenic features. In particular, they could shuttle between lymph nodes and the CNS and produced encephalitogenic cytokines. The cerebrospinal fluid of patients with active MS was enriched for CXCL10 and contained mainly CXCR3-expressing TH1 and TH1/TH17 subsets. However, while TH1 cells responded consistently to viruses, TH1/TH17CM cells reacted strongly with John Cunningham virus in healthy subjects but responded instead to myelin-derived self-antigens in patients with MS. Fingolimod and natalizumab therapies efficiently targeted autoreactive TH1/TH17CM cells but also blocked virus-specific TH1 cells. CONCLUSIONS: We propose that autoreactive TH1/TH17CM cells expand in patients with MS and promote relapses after bystander recruitment to the CNS, whereas TH1 cells perform immune surveillance. Thus the selective targeting of TH1/TH17 cells could inhibit relapses without causing John Cunningham virus-dependent progressive multifocal encephalomyelitis.


Asunto(s)
Antígenos Virales/inmunología , Autoantígenos/inmunología , Virus JC/inmunología , Esclerosis Múltiple/inmunología , Células TH1/inmunología , Células Th17/inmunología , Adulto , Citocinas/líquido cefalorraquídeo , Citocinas/inmunología , Femenino , Clorhidrato de Fingolimod/uso terapéutico , Expresión Génica , Humanos , Inmunosupresores/uso terapéutico , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/líquido cefalorraquídeo , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/genética , Natalizumab/uso terapéutico
19.
J Biol Chem ; 292(7): 2903-2915, 2017 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-28077577

RESUMEN

Upon T cell receptor stimulation, CD4+ T helper (Th) lymphocytes release extracellular vesicles (EVs) containing microRNAs. However, no data are available on whether human CD4+ T cell subsets release EVs containing different pattern of microRNAs. The present work aimed at filling this gap by assessing the microRNA content in EVs released upon in vitro T cell receptor stimulation of Th1, Th17, and T regulatory (Treg) cells. Our results indicate that EVs released by Treg cells are significantly different compared with those released by the other subsets. In particular, miR-146a-5p, miR-150-5p, and miR-21-5p are enriched, whereas miR-106a-5p, miR-155-5p, and miR-19a-3p are depleted in Treg-derived EVs. The in vitro identified EV-associated microRNA signature was increased in serum of autoimmune patients with psoriasis and returned to healthy levels upon effective treatment with etanercept, a biological drug targeting the TNF pathway and suppressing inflammation. Moreover, Gene Set Enrichment Analysis showed an over-representation of genes relevant for T cell activation, such as CD40L, IRAK1, IRAK2, STAT1, and c-Myb in the list of validated targets of Treg-derived EV miRNAs. At functional level, Treg-derived (but not Th1/Th17-derived) EVs inhibited CD4+ T cell proliferation and suppressed two relevant targets of miR-146a-5p: STAT1 and IRAK2. In conclusion, our work identified the miRNAs specifically released by different human CD4+ T cell subsets and started to unveil the potential use of their quantity in human serum to mark the pathological elicitation of these cells in vivo and their biological effect in cell to cell communication during the adaptive immune response.


Asunto(s)
Enfermedades Autoinmunes/genética , Linfocitos T CD4-Positivos/citología , Vesículas Extracelulares/metabolismo , MicroARNs/genética , Subgrupos de Linfocitos T , Enfermedades Autoinmunes/inmunología , Linfocitos T CD4-Positivos/inmunología , Células Cultivadas , Etanercept/uso terapéutico , Humanos , MicroARNs/sangre , Psoriasis/sangre , Psoriasis/tratamiento farmacológico , Psoriasis/genética
20.
Eur J Immunol ; 46(10): 2306-2310, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27726139

RESUMEN

Th17 cells are a heterogeneous population of pro-inflammatory T cells that have been shown to mediate immune responses against intestinal bacteria. Th17 cells are highly plastic and can transdifferentiate to Th1/17 cells or unconventional Th1 cells, which are highly pathogenic in animal models of immune-mediated diseases such as inflammatory bowel diseases. A recent European Journal of Immunology article by Liu et al. (Eur. J. Immunol. 2015. 45:1010-1018) showed, surprisingly, that Th1 cells have a similar plasticity, and could transdifferentiate to Th17 cells. Thus, IFN-γ-producing Th1 effector cells specific for an intestinal microbial antigen were shown to acquire IL-17-producing capacities in the gut in a mouse model of colitis, and in response to TGF-ß and IL-6 in vitro. TGF-ß induced Runx1, and together with IL-6 was shown to render the ROR-γt and IL-17 promoters in Th1 cells accessible for Runx1 binding. In this commentary, we discuss how this unexpected plasticity of Th1 cells challenges our view on the generation of Th1/17 cells with the capacity to co-produce IL-17 and IFN-γ, and consider possible implications of this Th1-to-Th17-cell conversion for therapies of inflammatory bowel diseases and protective immune responses against intracellular pathogens.


Asunto(s)
Infecciones/inmunología , Enfermedades Inflamatorias del Intestino/inmunología , Interleucina-6/metabolismo , Intestinos/inmunología , Células TH1/inmunología , Células Th17/inmunología , Factor de Crecimiento Transformador beta/metabolismo , Animales , Plasticidad de la Célula , Transdiferenciación Celular , Humanos , Inmunidad Celular , Ratones , Factores de Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA