Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Redox Biol ; 57: 102477, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36155342

RESUMEN

Redox imbalance and oxidative stress have emerged as generative causes of the structural and functional degradation of red blood cells (RBC) that happens during their hypothermic storage at blood banks. The aim of the present study was to examine whether the antioxidant enhancement of stored RBC units following uric (UA) and/or ascorbic acid (AA) supplementation can improve their storability as well as post-transfusion phenotypes and recovery by using in vitro and animal models, respectively. For this purpose, 34 leukoreduced CPD/SAGM RBC units were aseptically split in 4 satellite units each. UA, AA or their mixture were added in the three of them, while the fourth was used as control. Hemolysis as well as redox and metabolic parameters were studied in RBC units throughout storage. The addition of antioxidants maintained the quality parameters of stored RBCs, (e.g., hemolysis, calcium homeostasis) and furthermore, shielded them against oxidative defects by boosting extracellular and intracellular (e.g., reduced glutathione; GSH) antioxidant powers. Higher levels of GSH seemed to be obtained through distinct metabolic rewiring in the modified units: methionine-cysteine metabolism in UA samples and glutamine production in the other two groups. Oxidatively-induced hemolysis, reactive oxygen species accumulation and membrane lipid peroxidation were lower in all modifications compared to controls. Moreover, denatured/oxidized Hb binding to the membrane was minor, especially in the AA and mix treatments during middle storage. The treated RBC were able to cope against pro-oxidant triggers when found in a recipient mimicking environment in vitro, and retain control levels of 24h recovery in mice circulation. The currently presented study provides (a) a detailed picture of the effect of UA/AA administration upon stored RBCs and (b) insight into the differential metabolic rewiring when distinct antioxidant "enhancers" are used.

2.
Biomedicines ; 10(3)2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35327331

RESUMEN

The clarification of donor variation effects upon red blood cell (RBC) storage lesion and transfusion efficacy may open new ways for donor-recipient matching optimization. We hereby propose a "triangular" strategy for studying the links comprising the transfusion chain-donor, blood product, recipient-as exemplified in two cohorts of control and beta-thalassemia minor (ßThal+) donors (n = 18 each). It was unraveled that RBC osmotic fragility and caspase-like proteasomal activity can link both donor cohorts to post-storage states. In the case of heterozygotes, the geometry, size and intrinsic low RBC fragility might be lying behind their higher post-storage resistance to lysis and recovery in mice. Moreover, energy-related molecules (e.g., phosphocreatine) and purine metabolism factors (IMP, hypoxanthine) were specifically linked to lower post-storage hemolysis and phosphatidylserine exposure. The latter was also ameliorated by antioxidants, such as urate. Finally, higher proteasomal conservation across the transfusion chain was observed in heterozygotes compared to control donors. The proposed "triangularity model" can be (a) expanded to additional donor/recipient backgrounds, (b) enriched by big data, especially in the post-transfusion state and (c) fuel targeted experiments in order to discover new quality biomarkers and design more personalized transfusion medicine schemes.

3.
Int J Mol Sci ; 22(22)2021 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-34830162

RESUMEN

Blood donors with beta-thalassemia traits (ßThal+) have proven to be good "storers", since their stored RBCs are resistant to lysis and resilient against oxidative/proteotoxic stress. To examine the performance of these RBCs post-storage, stored ßThal+ and control RBCs were reconstituted in plasma donated from transfusion-dependent beta-thalassemic patients and healthy controls, and incubated for 24 h at body temperature. Several physiological parameters, including hemolysis, were evaluated. Moreover, labeled fresh/stored RBCs from the two groups were transfused in mice to assess 24 h recovery. All hemolysis metrics were better in the group of heterozygotes and distinguished them against controls in the plasma environment. The reconstituted ßThal+ samples also presented higher proteasome activity and fewer procoagulant extracellular vesicles. Transfusion to mice demonstrated that ßThal+ RBCs present a marginal trend for higher recovery, regardless of the recipient's immune background and the RBC storage age. According to correlation analysis, several of these advantageous post-storage characteristics are related to storage phenotypes, like the cytoskeleton composition, low cellular fragility, and enhanced membrane proteostasis that characterize stored ßThal+ RBCs. Overall, it seems that the intrinsic physiology of ßThal+ RBCs benefits them in conditions mimicking a recipient environment, and in the circulation of animal models; findings that warrant validation in clinical trials.


Asunto(s)
Donantes de Sangre , Conservación de la Sangre , Transfusión de Eritrocitos , Eritrocitos/metabolismo , Hemólisis , Talasemia beta/sangre , Animales , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...