Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurosci Res ; 99(1): 223-235, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32754987

RESUMEN

Huntington's disease (HD) is a neurodegenerative disorder caused by a glutamine expansion at the first exon of the huntingtin gene. Huntingtin protein (Htt) is ubiquitously expressed and it is localized in several organelles, including endosomes. HD is associated with a failure in energy metabolism and oxidative damage. Ascorbic acid is a powerful antioxidant highly concentrated in the brain where it acts as a messenger, modulating neuronal metabolism. It is transported into neurons via the sodium-dependent vitamin C transporter 2 (SVCT2). During synaptic activity, ascorbic acid is released from glial reservoirs to the extracellular space, inducing an increase in SVCT2 localization at the plasma membrane. Here, we studied SVCT2 trafficking and localization in HD. SVCT2 is decreased at synaptic terminals in YAC128 male mice. Using cellular models for HD (STHdhQ7 and STHdhQ111 cells), we determined that SVCT2 trafficking through secretory and endosomal pathways is altered in resting conditions. We observed Golgi fragmentation and SVCT2/Htt-associated protein-1 mis-colocalization. Additionally, we observed altered ascorbic acid-induced calcium signaling that explains the reduced SVCT2 translocation to the plasma membrane in the presence of extracellular ascorbic acid (active conditions) described in our previous results. Therefore, SVCT2 trafficking to the plasma membrane is altered in resting and active conditions in HD, explaining the redox imbalance observed during early stages of the disease.


Asunto(s)
Enfermedad de Huntington/metabolismo , Transporte de Proteínas/fisiología , Transportadores de Sodio Acoplados a la Vitamina C/metabolismo , Sinaptosomas/metabolismo , Animales , Masculino , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Oxidación-Reducción
2.
Front Aging Neurosci ; 12: 571185, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33101007

RESUMEN

Movement disorders are neurological conditions in which patients manifest a diverse range of movement impairments. Distinct structures within the basal ganglia of the brain, an area involved in movement regulation, are differentially affected for every disease. Among the most studied movement disorder conditions are Parkinson's (PD) and Huntington's disease (HD), in which the deregulation of the movement circuitry due to the loss of specific neuronal populations in basal ganglia is the underlying cause of motor symptoms. These symptoms are due to the loss principally of dopaminergic neurons of the substantia nigra (SN) par compacta and the GABAergic neurons of the striatum in PD and HD, respectively. Although these diseases were described in the 19th century, no effective treatment can slow down, reverse, or stop disease progression. Available pharmacological therapies have been focused on preventing or alleviating motor symptoms to improve the quality of life of patients, but these drugs are not able to mitigate the progressive neurodegeneration. Currently, considerable therapeutic advances have been achieved seeking a more efficacious and durable therapeutic effect. Here, we will focus on the new advances of several therapeutic approaches for PD and HD, starting with the available pharmacological treatments to alleviate the motor symptoms in both diseases. Then, we describe therapeutic strategies that aim to restore specific neuronal populations or their activity. Among the discussed strategies, the use of Neurotrophic factors (NTFs) and genetic approaches to prevent the neuronal loss in these diseases will be described. We will highlight strategies that have been evaluated in both Parkinson's and Huntington's patients, and also the ones with strong preclinical evidence. These current therapeutic techniques represent the most promising tools for the safe treatment of both diseases, specifically those aimed to avoid neuronal loss during disease progression.

3.
Nat Commun ; 4: 2917, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24336051

RESUMEN

Huntington's disease has been associated with a failure in energy metabolism and oxidative damage. Ascorbic acid is a powerful antioxidant highly concentrated in the brain where it acts as a messenger, modulating neuronal metabolism. Using an electrophysiological approach in R6/2 HD slices, we observe an abnormal ascorbic acid flux from astrocytes to neurons, which is responsible for alterations in neuronal metabolic substrate preferences. Here using striatal neurons derived from knock-in mice expressing mutant huntingtin (STHdhQ cells), we study ascorbic acid transport. When extracellular ascorbic acid concentration increases, as occurs during synaptic activity, ascorbic acid transporter 2 (SVCT2) translocates to the plasma membrane, ensuring optimal ascorbic acid uptake for neurons. In contrast, SVCT2 from cells that mimic HD symptoms (dubbed HD cells) fails to reach the plasma membrane under the same conditions. We reason that an early impairment of ascorbic acid uptake in HD neurons could lead to early metabolic failure promoting neuronal death.


Asunto(s)
Ácido Ascórbico/metabolismo , Metabolismo Energético , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Animales , Astrocitos/metabolismo , Astrocitos/patología , Línea Celular , Membrana Celular/genética , Membrana Celular/metabolismo , Modelos Animales de Enfermedad , Femenino , Proteína Huntingtina , Enfermedad de Huntington/genética , Masculino , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuroglía/metabolismo , Neuroglía/patología , Neuronas/metabolismo , Neuronas/patología , Transporte de Proteínas , Ratas Wistar , Transportadores de Sodio Acoplados a la Vitamina C/genética , Transportadores de Sodio Acoplados a la Vitamina C/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...