Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Eur J Cancer ; 207: 114145, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38936103

RESUMEN

Phosphatidylinositol 3-kinase (PI3-K) signalling pathway is a crucial path in cancer for cell survival and thus represents an intriguing target for new paediatric anti-cancer drugs. However, the unique clinical toxicities of targeting this pathway (resulting in hyperglycaemia) difficulties combining with chemotherapy, rarity of mutations in childhood tumours and concomitant mutations have resulted in major barriers to clinical translation of these inhibitors in treating both adults and children. Mutations in PIK3CA predict response to PI3-K inhibitors in adult cancers. The same mutations occur in children as in adults, but they are significantly less frequent in paediatrics. In children, high-grade gliomas, especially diffuse midline gliomas (DMG), have the highest incidence of PIK3CA mutations. New mutation-specific PI3-K inhibitors reduce toxicity from on-target PI3-Kα wild-type activity. The mTOR inhibitor everolimus is approved for subependymal giant cell astrocytomas. In paediatric cancers, mTOR inhibitors have been predominantly evaluated by academia, without an overall strategy, in empiric, mutation-agnostic clinical trials with very low response rates to monotherapy. Therefore, future trials of single agent or combination strategies of mTOR inhibitors in childhood cancer should be supported by very strong biological rationale and preclinical data. Further preclinical evaluation of glycogen synthase kinase-3 beta inhibitors is required. Similarly, even where there is an AKT mutation (∼0.1 %), the role of AKT inhibitors in paediatric cancers remains unclear. Patient advocates strongly urged analysing and conserving data from every child participating in a clinical trial. A priority is to evaluate mutation-specific, central nervous system-penetrant PI3-K inhibitors in children with DMG in a rational biological combination. The choice of combination, should be based on the genomic landscape e.g. PTEN loss and resistance mechanisms supported by preclinical data. However, in view of the very rare populations involved, innovative regulatory approaches are needed to generate data for an indication.


Asunto(s)
Glucógeno Sintasa Quinasa 3 beta , Neoplasias , Proteínas Proto-Oncogénicas c-akt , Serina-Treonina Quinasas TOR , Humanos , Niño , Adolescente , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Inhibidores de las Quinasa Fosfoinosítidos-3/uso terapéutico , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Inhibidores mTOR/uso terapéutico , Inhibidores mTOR/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Transducción de Señal/efectos de los fármacos
2.
Neuro Oncol ; 21(8): 968-980, 2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-30805642

RESUMEN

As the field of neuro-oncology makes headway in uncovering the key oncogenic drivers in pediatric glioma, the role of precision diagnostics and therapies continues to rapidly evolve with important implications for the standard of care for clinical management of these patients. Four studies at major academic centers were published in the last year outlining the clinically integrated molecular profiling and targeting of pediatric brain tumors; all 4 demonstrated the feasibility and utility of incorporating sequencing into the care of children with brain tumors, in particular for children and young adults with glioma. Based on synthesis of the data from these studies and others, we provide consensus recommendations for the integration of precision diagnostics and therapeutics into the practice of pediatric neuro-oncology. Our primary consensus recommendation is that next-generation sequencing should be routinely included in the workup of most pediatric gliomas.


Asunto(s)
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Niño , Consenso , Glioma/tratamiento farmacológico , Glioma/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Terapia Molecular Dirigida , Adulto Joven
3.
Pediatr Blood Cancer ; 63(3): 511-5, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26505993

RESUMEN

BACKGROUND: It has been anticipated that physician and parents will be ill prepared or unprepared for the clinical introduction of genome sequencing, making it ethically disruptive. PROCEDURE: As a part of the Baylor Advancing Sequencing in Childhood Cancer Care study, we conducted semistructured interviews with 16 pediatric oncologists and 40 parents of pediatric patients with cancer prior to the return of sequencing results. We elicited expectations and attitudes concerning the impact of sequencing on clinical decision making, clinical utility, and treatment expectations from both groups. Using accepted methods of qualitative research to analyze interview transcripts, we completed a thematic analysis to provide inductive insights into their views of sequencing. RESULTS: Our major findings reveal that neither pediatric oncologists nor parents anticipate sequencing to be an ethically disruptive technology, because they expect to be prepared to integrate sequencing results into their existing approaches to learning and using new clinical information for care. Pediatric oncologists do not expect sequencing results to be more complex than other diagnostic information and plan simply to incorporate these data into their evidence-based approach to clinical practice, although they were concerned about impact on parents. For parents, there is an urgency to protect their child's health and in this context they expect genomic information to better prepare them to participate in decisions about their child's care. CONCLUSIONS: Our data do not support the concern that introducing genome sequencing into childhood cancer care will be ethically disruptive, that is, leave physicians or parents ill prepared or unprepared to make responsible decisions about patient care.


Asunto(s)
Ética Médica , Exoma , Neoplasias/genética , Niño , Humanos , Entrevista Psicológica , Oncología Médica , Datos de Secuencia Molecular , Pacientes/psicología , Médicos/psicología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA