Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38826453

RESUMEN

C. elegans are exposed to a variety of pathogenic and non-pathogenic bacteria species in their natural environment. Correspondingly, C. elegans has evolved an ability to discern between nutritive and infectious bacterial food sources. Here we show that C. elegans can learn to avoid the pathogenic bacteria Pseudomonas fluorescens 15 (PF15), and that this learned avoidance behavior is passed on to progeny for four generations, as we previously demonstrated for Pseudomonas aeruginosa (PA14) and Pseudomonas vranovensis, using similar mechanisms, including the involvement of both the TGF-ß ligand DAF-7 and Cer1 retrotransposon-encoded virus-like particles. PF15 small RNAs are both necessary and sufficient to induce this transgenerational avoidance behavior. Unlike PA14 or P. vranovensis, PF15 does not use P11, Pv1, or a small RNA with maco-1 homology for this avoidance; instead, an unrelated PF15 small RNA, Pfs1, that targets the C. elegans vab-1 Ephrin receptor gene is necessary and sufficient for learned avoidance, suggesting the evolution of yet another bacterial sRNA/C. elegans gene target pair involved in transgenerational inheritance of pathogen avoidance. As VAB-2 Ephrin receptor ligand and MACO-1 knockdown also induce PF15 avoidance, we have begun to understand the genetic pathway involved in small RNA targeted pathogenic avoidance. Moreover, these data show that axon guidance pathway genes (VAB-1 and VAB-2) have previously unknown adult roles in regulating neuronal function. C. elegans may have evolved multiple bacterial specificity-encoded small RNA-dependent mechanisms to avoid different pathogenic bacteria species, thereby providing progeny with a survival advantage in a dynamic environment.

2.
Nature ; 628(8008): 639-647, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38570691

RESUMEN

Prime editing enables the precise modification of genomes through reverse transcription of template sequences appended to the 3' ends of CRISPR-Cas guide RNAs1. To identify cellular determinants of prime editing, we developed scalable prime editing reporters and performed genome-scale CRISPR-interference screens. From these screens, a single factor emerged as the strongest mediator of prime editing: the small RNA-binding exonuclease protection factor La. Further investigation revealed that La promotes prime editing across approaches (PE2, PE3, PE4 and PE5), edit types (substitutions, insertions and deletions), endogenous loci and cell types but has no consistent effect on genome-editing approaches that rely on standard, unextended guide RNAs. Previous work has shown that La binds polyuridine tracts at the 3' ends of RNA polymerase III transcripts2. We found that La functionally interacts with the 3' ends of polyuridylated prime editing guide RNAs (pegRNAs). Guided by these results, we developed a prime editor protein (PE7) fused to the RNA-binding, N-terminal domain of La. This editor improved prime editing with expressed pegRNAs and engineered pegRNAs (epegRNAs), as well as with synthetic pegRNAs optimized for La binding. Together, our results provide key insights into how prime editing components interact with the cellular environment and suggest general strategies for stabilizing exogenous small RNAs therein.


Asunto(s)
Edición Génica , Proteínas de Unión al ARN , Humanos , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Células K562 , Poli U/genética , Poli U/metabolismo , ARN Polimerasa III/metabolismo , ARN Guía de Sistemas CRISPR-Cas/genética , ARN Guía de Sistemas CRISPR-Cas/metabolismo , Proteínas de Unión al ARN/metabolismo
3.
Nat Ecol Evol ; 7(4): 557-569, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36941345

RESUMEN

Sweat bees have repeatedly gained and lost eusociality, a transition from individual to group reproduction. Here we generate chromosome-length genome assemblies for 17 species and identify genomic signatures of evolutionary trade-offs associated with transitions between social and solitary living. Both young genes and regulatory regions show enrichment for these molecular patterns. We also identify loci that show evidence of complementary signals of positive and relaxed selection linked specifically to the convergent gains and losses of eusociality in sweat bees. This includes two pleiotropic proteins that bind and transport juvenile hormone (JH)-a key regulator of insect development and reproduction. We find that one of these proteins is primarily expressed in subperineurial glial cells that form the insect blood-brain barrier and that brain levels of JH vary by sociality. Our findings are consistent with a role of JH in modulating social behaviour and suggest that eusocial evolution was facilitated by alteration of the proteins that bind and transport JH, revealing how an ancestral developmental hormone may have been co-opted during one of life's major transitions. More broadly, our results highlight how evolutionary trade-offs have structured the molecular basis of eusociality in these bees and demonstrate how both directional selection and release from constraint can shape trait evolution.


Asunto(s)
Conducta Social , Sudor , Abejas , Animales , Reproducción , Fenotipo
4.
Cell Syst ; 13(2): 158-172.e9, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-34706266

RESUMEN

Pancreatic cancer cells with limited access to free amino acids can grow by scavenging extracellular protein. In a murine model of pancreatic cancer, we performed a genome-wide CRISPR screen for genes required for scavenging-dependent growth. The screen identified key mediators of macropinocytosis, peripheral lysosome positioning, endosome-lysosome fusion, lysosomal protein catabolism, and translational control. The top hit was GCN2, a kinase that suppresses translation initiation upon amino acid depletion. Using isotope tracers, we show that GCN2 is not required for protein scavenging. Instead, GCN2 prevents ribosome stalling but without slowing protein synthesis; cells still use all of the limiting amino acids as they emerge from lysosomes. GCN2 also adapts gene expression to the nutrient-poor environment, reorienting protein synthesis away from ribosomes and toward lysosomal hydrolases, such as cathepsin L. GCN2, cathepsin L, and the other genes identified in the screen are potential therapeutic targets in pancreatic cancer.


Asunto(s)
Neoplasias Pancreáticas , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae , Aminoácidos/metabolismo , Animales , Catepsina L/metabolismo , Ratones , Neoplasias Pancreáticas/genética , Proteínas Serina-Treonina Quinasas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Cell ; 184(18): 4697-4712.e18, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34363756

RESUMEN

Animals face both external and internal dangers: pathogens threaten from the environment, and unstable genomic elements threaten from within. C. elegans protects itself from pathogens by "reading" bacterial small RNAs, using this information to both induce avoidance and transmit memories for four generations. Here, we found that memories can be transferred from either lysed animals or from conditioned media to naive animals via Cer1 retrotransposon-encoded virus-like particles. Moreover, Cer1 functions internally at the step of transmission of information from the germline to neurons and is required for learned avoidance. The presence of the Cer1 retrotransposon in wild C. elegans strains correlates with the ability to learn and inherit small-RNA-induced pathogen avoidance. Together, these results suggest that C. elegans has co-opted a potentially dangerous retrotransposon to instead protect itself and its progeny from a common pathogen through its inter-tissue signaling ability, hijacking this genomic element for its own adaptive immunity benefit.


Asunto(s)
Elementos Transponibles de ADN/genética , Transferencia de Gen Horizontal/genética , Patrón de Herencia/genética , Memoria/fisiología , Animales , Reacción de Prevención , Conducta Animal , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Vesículas Extracelulares/metabolismo , Regulación de la Expresión Génica , Genoma , Células Germinativas/metabolismo , ARN/metabolismo , Interferencia de ARN , Virión/metabolismo
6.
Lab Invest ; 101(10): 1403-1410, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34193963

RESUMEN

Stable isotope labeling techniques have been widely applied in the field of metabolomics and proteomics. Before the measured mass spectral data can be used for quantitative analysis, it must be accurately corrected for isotope natural abundance and tracer isotopic impurity. Despite the increasing popularity of dual-isotope tracing strategy such as 13C-15N or 13C-2H, there are no accurate tools for correcting isotope natural abundance for such experiments in a resolution-dependent manner. Here, we present AccuCor2 as an R-based tool to perform the correction for 13C-15N or 13C-2H labeling experiments. Our method uses a newly designed algorithm to construct the correction matrices that link labeling pattern and measured mass fractions, then use non-negative least-squares to solve the labeling patterns. Our results show that the dual-isotope experiments often require a mass resolution that is high enough to resolve 13C and 15N or 13C and 2H. Otherwise, the labeling pattern is not solvable. However, this mass resolution may not be sufficiently high to resolve other non-tracer elements such as oxygen or sulfur from the tracer elements. Therefore, we design AccuCor2 to perform the correction based on the actual mass resolution of the measurements. Using both simulated and experimental data, we show that AccuCor2 performs accurate and resolution-dependent correction for dual-isotope tracer data.


Asunto(s)
Marcaje Isotópico/métodos , Isótopos/análisis , Programas Informáticos , Algoritmos , Espectrometría de Masas , Metabolómica , Serina/análisis , Serina/química
7.
Nat Protoc ; 16(6): 2802-2825, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33953394

RESUMEN

Several essential components of the electron transport chain, the major producer of ATP in mammalian cells, are encoded in the mitochondrial genome. These 13 proteins are translated within mitochondria by 'mitoribosomes'. Defective mitochondrial translation underlies multiple inborn errors of metabolism and has been implicated in pathologies such as aging, metabolic syndrome and cancer. Here, we provide a detailed ribosome profiling protocol optimized to interrogate mitochondrial translation in mammalian cells (MitoRiboSeq), wherein mitoribosome footprints are generated with micrococcal nuclease and mitoribosomes are separated from cytosolic ribosomes and other RNAs by ultracentrifugation in a single straightforward step. We highlight critical steps during library preparation and provide a step-by-step guide to data analysis accompanied by open-source bioinformatic code. Our method outputs mitoribosome footprints at single-codon resolution. Codons with high footprint densities are sites of mitoribosome stalling. We recently applied this approach to demonstrate that defects in mitochondrial serine catabolism or in mitochondrial tRNA methylation cause stalling of mitoribosomes at specific codons. Our method can be applied to study basic mitochondrial biology or to characterize abnormalities in mitochondrial translation in patients with mitochondrial disorders.


Asunto(s)
Perfilación de la Expresión Génica , Ribosomas Mitocondriales/metabolismo , Biosíntesis de Proteínas , Análisis de Secuencia/métodos , Células HCT116 , Humanos
8.
Microbiol Resour Announc ; 10(12)2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33766904

RESUMEN

Herpes simplex virus 1 (HSV-1) strain McKrae was isolated in 1965 and has been utilized by many laboratories. Three HSV-1 strain McKrae stocks have been sequenced previously, revealing discrepancies in key genes. We sequenced the genome of HSV-1 strain McKrae from the laboratory of James M. Hill to better understand the genetic differences between isolates.

9.
Nature ; 586(7829): 445-451, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32908307

RESUMEN

Caenorhabditis elegans must distinguish pathogens from nutritious food sources among the many bacteria to which it is exposed in its environment1. Here we show that a single exposure to purified small RNAs isolated from pathogenic Pseudomonas aeruginosa (PA14) is sufficient to induce pathogen avoidance in the treated worms and in four subsequent generations of progeny. The RNA interference (RNAi) and PIWI-interacting RNA (piRNA) pathways, the germline and the ASI neuron are all required for avoidance behaviour induced by bacterial small RNAs, and for the transgenerational inheritance of this behaviour. A single P. aeruginosa non-coding RNA, P11, is both necessary and sufficient to convey learned avoidance of PA14, and its C. elegans target, maco-1, is required for avoidance. Our results suggest that this non-coding-RNA-dependent mechanism evolved to survey the microbial environment of the worm, use this information to make appropriate behavioural decisions and pass this information on to its progeny.


Asunto(s)
Reacción de Prevención , Caenorhabditis elegans/genética , Caenorhabditis elegans/microbiología , Pseudomonas aeruginosa/genética , ARN Bacteriano/genética , ARN no Traducido/genética , Animales , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Femenino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación , Neuronas/metabolismo , Pseudomonas aeruginosa/patogenicidad , Interferencia de ARN , ARN Interferente Pequeño/genética , Ribonucleasa III/metabolismo , Especificidad de la Especie , Factor de Crecimiento Transformador beta/metabolismo , Testamentos
10.
Hepatology ; 71(1): 14-30, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31206195

RESUMEN

Hepatitis B virus (HBV) remains a major global health problem with 257 million chronically infected individuals worldwide, of whom approximately 20 million are co-infected with hepatitis delta virus (HDV). Progress toward a better understanding of the complex interplay between these two viruses and the development of novel therapies have been hampered by the scarcity of suitable cell culture models that mimic the natural environment of the liver. Here, we established HBV and HBV/HDV co-infections and super-infections in self-assembling co-cultured primary human hepatocytes (SACC-PHHs) for up to 28 days in a 384-well format and highlight the suitability of this platform for high-throughput drug testing. We performed RNA sequencing at days 8 and 28 on SACC-PHHs, either HBV mono-infected or HBV/HDV co-infected. Our transcriptomic analysis demonstrates that hepatocytes in SACC-PHHs maintain a mature hepatic phenotype over time, regardless of infection condition. We confirm that HBV is a stealth virus, as it does not induce a strong innate immune response; rather, oxidative phosphorylation and extracellular matrix-receptor interactions are dysregulated to create an environment that promotes persistence. Notably, HDV co-infection also did not lead to statistically significant transcriptional changes across multiple donors and replicates. The lack of innate immune activation is not due to SACC-PHHs being impaired in their ability to induce interferon stimulated genes (ISGs). Rather, polyinosinic:polycytidylic acid exposure activates ISGs, and this stimulation significantly inhibits HBV infection, yet only minimally affects the ability of HDV to infect and persist. Conclusion: These data demonstrate that the SACC-PHH system is a versatile platform for studying HBV/HDV co-infections and holds promise for performing chemical library screens and improving our understanding of the host response to such infections.


Asunto(s)
Virus de la Hepatitis B/inmunología , Virus de la Hepatitis Delta/inmunología , Hepatocitos/inmunología , Hepatocitos/virología , Inmunidad Innata/fisiología , Técnicas de Cocultivo/métodos , Humanos
11.
Life Sci Alliance ; 2(5)2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31649152

RESUMEN

Differences in immune responses across species can contribute to the varying permissivity of species to the same viral pathogen. Understanding how our closest evolutionary relatives, nonhuman primates (NHPs), confront pathogens and how these responses have evolved over time could shed light on host range barriers, especially for zoonotic infections. Here, we analyzed cell-intrinsic immunity of primary cells from the broadest panel of NHP species interrogated to date, including humans, great apes, and Old and New World monkeys. Our analysis of their transcriptomes after poly(I:C) transfection revealed conservation in the functional consequences of their response. In mapping reads to either the human or the species-specific genomes, we observed that with the current state of NHP annotations, the percent of reads assigned to a genetic feature was largely similar regardless of the method. Together, these data provide a baseline for the cell-intrinsic responses elicited by a potent immune stimulus across multiple NHP donors, including endangered species, and serve as a resource for refining and furthering the existing annotations of NHP genomes.


Asunto(s)
Cercopithecidae/genética , Perfilación de la Expresión Génica/métodos , Hominidae/genética , Inmunidad Celular/efectos de los fármacos , Platirrinos/genética , Poli I-C/administración & dosificación , Análisis de Secuencia de ARN/métodos , Animales , Células Cultivadas , Cercopithecidae/inmunología , Secuencia Conservada , Evolución Molecular , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Hominidae/inmunología , Humanos , Masculino , Ratones , Anotación de Secuencia Molecular , Platirrinos/inmunología , Poli I-C/farmacología
12.
Nature ; 571(7765): 349-354, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31292549

RESUMEN

Ascidian embryos highlight the importance of cell lineages in animal development. As simple proto-vertebrates, they also provide insights into the evolutionary origins of cell types such as cranial placodes and neural crest cells. Here we have determined single-cell transcriptomes for more than 90,000 cells that span the entirety of development-from the onset of gastrulation to swimming tadpoles-in Ciona intestinalis. Owing to the small numbers of cells in ascidian embryos, this represents an average of over 12-fold coverage for every cell at every stage of development. We used single-cell transcriptome trajectories to construct virtual cell-lineage maps and provisional gene networks for 41 neural subtypes that comprise the larval nervous system. We summarize several applications of these datasets, including annotating the synaptome of swimming tadpoles and tracing the evolutionary origin of cell types such as the vertebrate telencephalon.


Asunto(s)
Linaje de la Célula/genética , Ciona intestinalis/citología , Ciona intestinalis/genética , Análisis de la Célula Individual , Transcriptoma , Animales , Secuencia de Bases , Evolución Biológica , Ciona intestinalis/clasificación , Ciona intestinalis/crecimiento & desarrollo , Gastrulación , Redes Reguladoras de Genes , Larva/citología , Larva/genética , Sistema Nervioso/citología , Sistema Nervioso/metabolismo , Neuronas/citología , Neuronas/metabolismo , Notocorda/citología , Notocorda/embriología , Especificidad de Órganos , Sinapsis/genética , Sinapsis/metabolismo
13.
Nat Commun ; 9(1): 5031, 2018 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-30487575

RESUMEN

Mice engrafted with components of a human immune system have become widely-used models for studying aspects of human immunity and disease. However, a defined methodology to objectively measure and compare the quality of the human immune response in different models is lacking. Here, by taking advantage of the highly immunogenic live-attenuated yellow fever virus vaccine YFV-17D, we provide an in-depth comparison of immune responses in human vaccinees, conventional humanized mice, and second generation humanized mice. We demonstrate that selective expansion of human myeloid and natural killer cells promotes transcriptomic responses akin to those of human vaccinees. These enhanced transcriptomic profiles correlate with the development of an antigen-specific cellular and humoral response to YFV-17D. Altogether, our approach provides a robust scoring of the quality of the human immune response in humanized mice and highlights a rational path towards developing better pre-clinical models for studying the human immune response and disease.


Asunto(s)
Células Asesinas Naturales/metabolismo , Células Mieloides/metabolismo , Vacunas Atenuadas/inmunología , Vacuna contra la Fiebre Amarilla/inmunología , Virus de la Fiebre Amarilla/inmunología , Animales , Humanos , Células Asesinas Naturales/inmunología , Ratones , Células Mieloides/inmunología , Transcriptoma/genética , Vacuna contra la Fiebre Amarilla/genética , Virus de la Fiebre Amarilla/genética
14.
Cell Syst ; 7(1): 49-62.e8, 2018 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-29960885

RESUMEN

Altered glycolysis is a hallmark of diseases including diabetes and cancer. Despite intensive study of the contributions of individual glycolytic enzymes, systems-level analyses of flux control through glycolysis remain limited. Here, we overexpress in two mammalian cell lines the individual enzymes catalyzing each of the 12 steps linking extracellular glucose to excreted lactate, and find substantial flux control at four steps: glucose import, hexokinase, phosphofructokinase, and lactate export (and not at any steps of lower glycolysis). The four flux-controlling steps are specifically upregulated by the Ras oncogene: optogenetic Ras activation rapidly induces the transcription of isozymes catalyzing these four steps and enhances glycolysis. At least one isozyme catalyzing each of these four steps is consistently elevated in human tumors. Thus, in the studied contexts, flux control in glycolysis is concentrated in four key enzymatic steps. Upregulation of these steps in tumors likely underlies the Warburg effect.


Asunto(s)
Glucólisis/fisiología , Hexoquinasa/metabolismo , Fosfofructoquinasa-1/metabolismo , Animales , Transporte Biológico , Línea Celular , Genes ras/genética , Genes ras/fisiología , Glucosa/metabolismo , Glucólisis/genética , Células HEK293 , Hexoquinasa/genética , Humanos , Isoenzimas/metabolismo , Ácido Láctico/biosíntesis , Mamíferos , Ratones , Modelos Biológicos , Células 3T3 NIH , Neoplasias/enzimología
15.
G3 (Bethesda) ; 7(7): 2219-2226, 2017 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-28584079

RESUMEN

The yeast Saccharomyces cerevisiae has emerged as a superior model organism. Selection of distinct laboratory strains of S. cerevisiae with unique phenotypic properties, such as superior mating or sporulation efficiencies, has facilitated advancements in research. W303 is one such laboratory strain that is closely related to the first completely sequenced yeast strain, S288C. In this work, we provide a high-quality, annotated genome sequence for W303 for utilization in comparative analyses and genome-wide studies. Approximately 9500 variations exist between S288C and W303, affecting the protein sequences of ∼700 genes. A listing of the polymorphisms and divergent genes is provided for researchers interested in identifying the genetic basis for phenotypic differences between W303 and S288C. Several divergent functional gene families were identified, including flocculation and sporulation genes, likely representing selection for desirable laboratory phenotypes. Interestingly, remnants of ancestor wine strains were found on several chromosomes. Finally, as a test of the utility of the high-quality reference genome, variant mapping revealed more accurate identification of accumulated mutations in passaged mismatch repair-defective strains.


Asunto(s)
Genoma Fúngico , Anotación de Secuencia Molecular , Polimorfismo Genético , Saccharomyces cerevisiae/genética , Estudio de Asociación del Genoma Completo , Especificidad de la Especie
16.
J Vis Exp ; (110): e54239 |, 2016 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-27077531

RESUMEN

Extrachromosomal circular DNAs (eccDNAs) are common genetic elements in Saccharomyces cerevisiae and are reported in other eukaryotes as well. EccDNAs contribute to genetic variation among somatic cells in multicellular organisms and to evolution of unicellular eukaryotes. Sensitive methods for detecting eccDNA are needed to clarify how these elements affect genome stability and how environmental and biological factors induce their formation in eukaryotic cells. This video presents a sensitive eccDNA-purification method called Circle-Seq. The method encompasses column purification of circular DNA, removal of remaining linear chromosomal DNA, rolling-circle amplification of eccDNA, deep sequencing, and mapping. Extensive exonuclease treatment was required for sufficient linear chromosomal DNA degradation. The rolling-circle amplification step by φ29 polymerase enriched for circular DNA over linear DNA. Validation of the Circle-Seq method on three S. cerevisiae CEN.PK populations of 10(10) cells detected hundreds of eccDNA profiles in sizes larger than 1 kilobase. Repeated findings of ASP3-1, COS111, CUP1, RSC30, HXT6, HXT7 genes on circular DNA in both S288c and CEN.PK suggests that DNA circularization is conserved between strains at these loci. In sum, the Circle-Seq method has broad applicability for genome-scale screening for eccDNA in eukaryotes as well as for detecting specific eccDNA types.


Asunto(s)
ADN Circular/aislamiento & purificación , ADN de Hongos/aislamiento & purificación , Herencia Extracromosómica/genética , Saccharomyces cerevisiae/genética , ADN Circular/genética , ADN de Hongos/genética , Células Eucariotas , Genoma , Genoma Fúngico
17.
G3 (Bethesda) ; 6(2): 453-62, 2015 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-26681518

RESUMEN

Extrachromosomal circular DNA (eccDNA) derived from chromosomal Ty retrotransposons in yeast can be generated in multiple ways. Ty eccDNA can arise from the circularization of extrachromosomal linear DNA during the transpositional life cycle of retrotransposons, or from circularization of genomic Ty DNA. Circularization may happen through nonhomologous end-joining (NHEJ) of long terminal repeats (LTRs) flanking Ty elements, by Ty autointegration, or by LTR-LTR recombination. By performing an in-depth investigation of sequence reads stemming from Ty eccDNAs obtained from populations of Saccharomyces cerevisiae S288c, we find that eccDNAs predominantly correspond to full-length Ty1 elements. Analyses of sequence junctions reveal no signs of NHEJ or autointegration events. We detect recombination junctions that are consistent with yeast Ty eccDNAs being generated through recombination events within the genome. This opens the possibility that retrotransposable elements could move around in the genome without an RNA intermediate directly through DNA circularization.


Asunto(s)
ADN Circular , Plásmidos , Retroelementos , Saccharomyces cerevisiae/genética , Secuencias Repetidas Terminales , Secuencia de Bases , Puntos de Rotura del Cromosoma , ADN de Hongos , Evolución Molecular , Datos de Secuencia Molecular , Familia de Multigenes , Recombinación Genética , Alineación de Secuencia
18.
Proc Natl Acad Sci U S A ; 112(24): E3114-22, 2015 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-26038577

RESUMEN

Examples of extrachromosomal circular DNAs (eccDNAs) are found in many organisms, but their impact on genetic variation at the genome scale has not been investigated. We mapped 1,756 eccDNAs in the Saccharomyces cerevisiae genome using Circle-Seq, a highly sensitive eccDNA purification method. Yeast eccDNAs ranged from an arbitrary lower limit of 1 kb up to 38 kb and covered 23% of the genome, representing thousands of genes. EccDNA arose both from genomic regions with repetitive sequences ≥ 15 bases long and from regions with short or no repetitive sequences. Some eccDNAs were identified in several yeast populations. These eccDNAs contained ribosomal genes, transposon remnants, and tandemly repeated genes (HXT6/7, ENA1/2/5, and CUP1-1/-2) that were generally enriched on eccDNAs. EccDNAs seemed to be replicated and 80% contained consensus sequences for autonomous replication origins that could explain their maintenance. Our data suggest that eccDNAs are common in S. cerevisiae, where they might contribute substantially to genetic variation and evolution.


Asunto(s)
ADN Circular/genética , ADN de Hongos/genética , Saccharomyces cerevisiae/genética , Secuencia de Bases , ADN Circular/aislamiento & purificación , ADN de Hongos/aislamiento & purificación , Evolución Molecular , Herencia Extracromosómica , Variación Genética , Genoma Fúngico , Modelos Genéticos , Mutación , Origen de Réplica
19.
mBio ; 6(2)2015 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-25827418

RESUMEN

UNLABELLED: Herpes simplex virus (HSV) is a widespread pathogen that causes epithelial lesions with recurrent disease that manifests over a lifetime. The lifelong aspect of infection results from latent viral infection of neurons, a reservoir from which the virus reactivates periodically. Recent work has demonstrated the breadth of genetic variation in globally distributed HSV strains. However, the amount of variation or capacity for mutation within one strain has not been well studied. Here we developed and applied a streamlined new approach for assembly and comparison of large DNA viral genomes such as HSV-1. This viral genome assembly (VirGA) workflow incorporates a combination of de novo assembly, alignment, and annotation strategies to automate the generation of draft genomes for large viruses. We applied this approach to quantify the amount of variation between clonal derivatives of a common parental virus stock. In addition, we examined the genetic basis for syncytial plaque phenotypes displayed by a subset of these strains. In each of the syncytial strains, we found an identical DNA change, affecting one residue in the gB (UL27) fusion protein. Since these identical mutations could have appeared after extensive in vitro passaging, we applied the VirGA sequencing and comparison approach to two clinical HSV-1 strains isolated from the same patient. One of these strains was syncytial upon first culturing; its sequence revealed the same gB mutation. These data provide insight into the extent and origin of genome-wide intrastrain HSV-1 variation and present useful methods for expansion to in vivo patient infection studies. IMPORTANCE: Herpes simplex virus (HSV) infects more than 70% of adults worldwide, causing epithelial lesions and recurrent disease that manifests over a lifetime. Prior work has demonstrated that HSV strains vary from country to country and between individuals. However, the amount of variation within one strain has not been well studied. To address this, we developed a new approach for viral genome assembly (VirGA) and analysis. We used this approach to quantify the amount of variation between sister clones of a common parental virus stock and to determine the basis of a unique fusion phenotype displayed by several variants. These data revealed that while sister clones of one HSV stock are more than 98% identical, these variants harbor enough genetic differences to change their observed characteristics. Comparative genomics approaches will allow us to explore the impacts of viral inter- and intrastrain diversity on drug and vaccine efficacy.


Asunto(s)
Biología Computacional/métodos , Variación Genética , Genoma Viral , Herpesvirus Humano 1/genética , Análisis de Secuencia de ADN/métodos , Adulto , Humanos , Datos de Secuencia Molecular , Mutación
20.
Genome Announc ; 2(6)2014 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-25395637

RESUMEN

We used paired-end Illumina deep sequencing and de novo assembly to determine the genome sequence of herpes simplex virus 1 (HSV-1) strain MacIntyre (aka McIntyre). The MacIntyre strain originated from the brain of a patient with lethal HSV encephalitis and has a unique limitation in its neuronal spread, moving solely in the retrograde direction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...