Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RSC Med Chem ; 15(4): 1381-1391, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38665829

RESUMEN

The emergence of antibiotic resistance to S. aureus and M. tuberculosis, particularly MRSA, VRSA, and drug-resistant tuberculosis, poses a serious threat to human health. Towards discovering new antibacterial agents, we designed and synthesized a series of new naphthalimide-thiourea derivatives and evaluated them against a panel of bacterial strains consisting of E. coli, S. aureus, K. pneumoniae, P. aeruginosa, A. baumannii and various mycobacterial pathogens. Compounds 4a, 4l, 4m, 4n, 4q, 9f, 9l, 13a, 13d, 13e, 17a, 17b, 17c, 17d, and 17e demonstrated potent antibacterial activity against S. aureus with MIC 0.03-8 µg mL-1. In addition, these compounds have also exhibited potent inhibition against MDR strains of S. aureus, including VRSA with MICs 0.06-4 µg mL-1. Compounds 4h, 4j, 4l, 4m, 4q, 4r, 9a, 9b, 9c, 9d, 9e, 9g, 9h, 9j, 13f and 17e also exhibited good antimycobacterial activity against M. tuberculosis with MIC 2-64 µg mL-1. The cytotoxicity assay using Vero cells revealed that all the compounds were non-toxic and exhibited a favorable selectivity index (SI >40). Time kill kinetics data indicated that compounds exhibited concentration-dependent killing. Furthermore, in silico studies were performed to decipher the possible mechanism of action. Comprehensively, these results highlight the potential of naphthalimide-thiourea derivatives as promising antibacterial agents.

2.
J Pharm Biomed Anal ; 234: 115517, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37320975

RESUMEN

Roxadustat is the first drug approved for anemia due to chronic kidney disease. Drug degradation profile is very crucial for assessing the quality and safety of the drug substances and their formulations. Forced degradation studies are conducted for quick prediction of drug degradation products. Forced degradation of roxadustat was carried out as per ICH guidelines, and nine degradation products (DPs) were observed. These DPs (DP-1 to DP-9) were separated using the reverse phase HPLC gradient method with an XBridge column (250 mm × 4.6 mm, 5 µm). The mobile phase consisted of 0.1% formic acid (solvent A) and acetonitrile (solvent B) at a flow rate of 1.0 ml/min. The chemical structures of all the DPs were proposed by using LC-Q-TOF/MS. DP-4 and DP-5, the two major degradation impurities, were isolated, and NMR was used to confirm their chemical structures. Based on our experiments, the roxadustat was found stable to thermal degradation in solid state and oxidative conditions. However, it was unstable in acidic, basic, and photolytic conditions. A very remarkable observation was made about DP-4 impurity. DP-4 was generated as a common degradation impurity in alkaline hydrolysis, neutral hydrolysis as well as photolysis conditions. DP-4 has a similar molecular mass to roxadustat but is structurally different. DP-4 is chemically, (1a-methyl-6-oxo-3-phenoxy-1,1a,6,6a-tetrahydroindeno [1,2-b] aziridine-6a-carbonyl) glycine. In silico toxicity study was conducted using Dereck software to gain the best knowledge of the drug and its degradation products towards carcinogenicity, mutagenicity, teratogenicity, and skin sensitivity. A further study using molecular docking confirmed the potential interaction of DPs with proteins responsible for toxicity. DP-4 shows a toxicity alert due to the presence of aziridine moiety.


Asunto(s)
Glicina , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Simulación del Acoplamiento Molecular , Estabilidad de Medicamentos , Cromatografía Líquida de Alta Presión/métodos , Solventes/química , Glicina/toxicidad , Hidrólisis , Oxidación-Reducción , Fotólisis
3.
Arch Pharm (Weinheim) ; 356(9): e2300205, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37391391

RESUMEN

Rhodanine and its derivatives are an important class of heterocycles with diverse biological properties, including anticancer, antibacterial, and anti-mycobacterial activities. In the present work, four series of new Rhodanine derivatives were synthesized and evaluated for their inhibitory activity against carbonic anhydrase I, II, IX, and XII isoforms. Interestingly, the tested compounds exhibited good inhibitory activity against the cytosolic isoform human carbonic anhydrase (hCA) II and tumor-associated hCA IX. While the Rhodanine-benzylidene derivatives (3a-l) and Rhodanine-hydrazine derivatives (6a-e) are found to be selective against hCA II, the Rhodanine-N-carboxylate derivatives (8a-d) are found to be highly selective toward hCA IX. The Rhodanine-linked isoxazole and 1,2,4-oxadiazole derivatives (8ba, 8da, and 8db) exhibited inhibitory activity against hCA II and hCA IX. Among the tested compounds, 3b, 3j, 6d, and 8db were found to inhibit hCA II with Ki values of 9.8, 46.4, 7.7, and 4.7 µM, respectively. Furthermore, their mechanism of action is supported by molecular docking studies. Notably, the synthesized Rhodanine derivatives belong to a nonsulfonamide class of carbonic anhydrase inhibitors.


Asunto(s)
Anhidrasas Carbónicas , Rodanina , Humanos , Anhidrasa Carbónica II , Anhidrasas Carbónicas/metabolismo , Rodanina/farmacología , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular , Inhibidores de Anhidrasa Carbónica/farmacología , Estructura Molecular
4.
Bioorg Chem ; 135: 106478, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36958121

RESUMEN

Cancer is associated with uncontrolled cell proliferation invading adjoining tissues and organs. Despite the availability of several chemotherapeutic agents, the constant search for newer approaches and drugs is necessitated owing to the ever-growing challenge of resistance. Over the years, DNA has emerged as an important druggable therapeutic drug due to its role in critical cellular processes such as cell division and maintenance. Further, evading apoptosis stands out as a hallmark of cancer. Hence, designing new compounds that would target DNA and induce apoptosis plays an important role in cancer therapy. In the current work, we carried out the synthesis and anticancer evaluation of 1-aryl-4,6-dihydrobenzo[b]pyrazolo[3,4-d]azepin-5(1H)-ones/thiones (26 compounds) against selected human cancer cell lines. Among these, compounds 8ae, 8ad, 8cf, 10ad and Kenpaullone have shown good inhibitory properties against HeLa cells (IC50 < 2 µM) with good selectivity over the non-cancerous human embryonic kidney (Hek293T) cells. In cell cycle analysis, the compounds 8ad and 8cf have exhibited G2/M cell cycle arrest in HeLa cells. In addition, the compounds 8ad and 8cf induced apoptosis in a dose-dependent manner in the Annexin-V FITC staining assay. The DAPI staining clearly demonstrated the condensed and fragmented nuclei in 8ad, 8cf, 8ae and Kenpaullone-treated HeLa cells. In addition, these compounds strongly suppressed the healing after 48 h in in vitro cell migration assay. The DNA binding experiments indicated that compounds 8ae, 8cf, and 8ad as well as Kenpaullone interact with double-stranded DNA by binding in grooves which may interrupt the DNA replication and kill fast-growing cells. Molecular docking studies revealed the binding pose of 8ad and Kenpaullone at HT1 binding pocket of double-stranded DNA. Compounds 8ad and 8cf demonstrated moderate topo II inhibition which could be a possible reason for their anticancer properties. Compounds 8ad and 8cf may cause the topo II and DNA covalent complex, which leads to the inhibition of DNA replication and transcription. This eventually increases the DNA damage in cells and promotes cell apoptosis. With the above interesting biological profile, the new 1-aryl-2,6-dihydrobenzo[b]pyrazolo[3,4-d]azepin-5(4H)-one/thione derivatives have emerged as promising leads for the discovery of new anticancer agents.


Asunto(s)
Antineoplásicos , Tionas , Humanos , Antineoplásicos/química , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Células HEK293 , Células HeLa , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad , Tionas/farmacología , Azepinas/química , Azepinas/farmacología
5.
Future Med Chem ; 14(22): 1621-1634, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36326019

RESUMEN

Background: In the authors' previous study, 4-(2-((3-methyl-4-oxo-2-thioxo/dioxothiazolidin-5-ylidene) methyl) hydrazineyl) benzonitriles were found to demonstrate potent antibacterial activity against Acinetobacter baumannii. Interestingly, the aforementioned compounds contain a 4-cyanophenylhydrazine motif. Materials & methods: Intrigued by this observation, the authors focused on preparing a library of 4-cyanophenylhydrazine derivatives and studied their detailed antibacterial potential. Results: This study led to the identification of a 4-cyanophenylhydrazine with potent inhibitory activity against carbapenem-resistant A. baumannii BAA-1605, with minimum inhibitory concentration (MIC) of 0.25 µg/ml and highest selectivity index of 640. The compound also demonstrated potent inhibition against multidrug-resistant A. baumannii isolates (MIC: 0.25-1 µg/ml). Conclusion: The identified 4-cyanophenylhydrazine compound exhibited synergistic activity with amikacin, tobramycin and polymyxin B against carbapenem-resistant A. baumannii BAA-1605.


Asunto(s)
Acinetobacter baumannii , Carbapenémicos/farmacología , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Fenilhidrazinas/farmacología , Farmacorresistencia Bacteriana Múltiple , Sinergismo Farmacológico
6.
Bioorg Chem ; 116: 105288, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34454299

RESUMEN

Infections caused due to multidrug resistant organisms have emerged as a constant menace to human health. Even though numerous antibiotics are currently available for treating infectious diseases, a great number of bacterial strains have acquired resistance to many of them. Among these, infections caused due to Staphylococcus aureus are predominant in adult and paediatric population. Indole is a prominent chemical scaffold found in many pharmacologically active natural products and synthetic drugs. A number of oxime ether containing compounds have attracted attention of researchers owing to their interesting biological properties. Current work details the synthesis of indole containing oxime ether derivatives and their evaluation for antimicrobial activity against a panel of bacterial and mycobacterial strains. Synthesized compounds demonstrated good to moderate activity against drug-resistant S. aureus including resistant to vancomycin. Among all, compound 5h was found to possess potent activity against susceptible as well as MRSA and VRSA strains of S. aureus with MIC of 1 µg/mL and 2-4 µg/mL respectively. In addition, compound 5h was found to be non-toxic to Vero cells and exhibited good selectivity index of >40. Further, 5h, E-9a and E-9b possessed good biofilm inhibition against S. aureus. With these assuring biological properties, synthesized compounds could be potential prospective antimicrobial agents.


Asunto(s)
Antibacterianos/farmacología , Oximas/farmacología , Staphylococcus aureus/efectos de los fármacos , Animales , Antibacterianos/síntesis química , Antibacterianos/química , Biopelículas/efectos de los fármacos , Chlorocebus aethiops , Relación Dosis-Respuesta a Droga , Resistencia a la Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Oximas/síntesis química , Oximas/química , Relación Estructura-Actividad , Resistencia a la Vancomicina/efectos de los fármacos , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...