Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Infect Dis ; 143: 107041, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38583824

RESUMEN

OBJECTIVES: The objective of this study was to explore the factors and outcomes associated with gestational syphilis in Peru. METHODS: Women from the miscarriage, vaginal delivery, and C-section wards from a large maternity hospital in Lima with or without syphilis diagnosis were enrolled and their pregnancy outcomes compared. Maternal syphilis status using maternal blood and child serostatus using cord blood were determined by rapid plasma reagin (RPR) and rapid syphilis tests. The newborns' clinical records were used to determine congenital syphilis. RESULTS: A total of 340 women were enrolled, 197 were positive and 143 were negative for RPR/rapid syphilis tests. Antibody titers in sera from cord and maternal blood were comparable with RPR titers and were highly correlated (rho = 0.82, P <0.001). Young age (P = 0.009) and lower birth weight (P = 0.029) were associated with gestational syphilis. Of the women with gestational syphilis, 76% had received proper treatment. Mothers of all newborns with congenital syphilis also received appropriate treatment. Treatment of their sexual partners was not documented. CONCLUSIONS: Syphilis during pregnancy remains a major cause of the fetal loss and devastating effects of congenital syphilis in newborns.


Asunto(s)
Complicaciones Infecciosas del Embarazo , Sífilis Congénita , Sífilis , Humanos , Femenino , Embarazo , Perú/epidemiología , Sífilis Congénita/epidemiología , Sífilis Congénita/diagnóstico , Adulto , Complicaciones Infecciosas del Embarazo/epidemiología , Complicaciones Infecciosas del Embarazo/microbiología , Estudios Prospectivos , Recién Nacido , Sífilis/epidemiología , Sífilis/diagnóstico , Adulto Joven , Resultado del Embarazo/epidemiología , Transmisión Vertical de Enfermedad Infecciosa , Serodiagnóstico de la Sífilis , Adolescente , Sangre Fetal
2.
Microbes Infect ; 26(1-2): 105241, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38380602

RESUMEN

Transplacental transmission of syphilis causing spirochete, Treponema pallidum subspecies pallidum, from mother to child results in congenital syphilis, an ever-expanding devastating disease worldwide. Although adverse effects of untreated gestational Lyme disease, caused by a related spirochete, Borrelia burgdorferi on fetus viability and development have been observed, cases of congenital Lyme disease are not reported. In this study, we show that B. burgdorferi colonizes mammary glands of C3H mice only postpartum; however, neither transmission of these spirochetes from dams-to-pups occurs nor congenital Lyme disease is observed in pups.


Asunto(s)
Borrelia burgdorferi , Enfermedad de Lyme , Glándulas Mamarias Humanas , Treponema , Humanos , Ratones , Animales , Niño , Femenino , Ratones Endogámicos C3H , Lactancia , Transmisión Vertical de Enfermedad Infecciosa
3.
Front Microbiol ; 13: 1020029, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36504775

RESUMEN

A wide range of protozoan pathogens either transmitted by vectors (Plasmodium, Babesia, Leishmania and Trypanosoma), by contaminated food or water (Entamoeba and Giardia), or by sexual contact (Trichomonas) invade various organs in the body and cause prominent human diseases, such as malaria, babesiosis, leishmaniasis, trypanosomiasis, diarrhea, and trichomoniasis. Humans are frequently exposed to multiple pathogens simultaneously, or sequentially in the high-incidence regions to result in co-infections. Consequently, synergistic or antagonistic pathogenic effects could occur between microbes that also influences overall host responses and severity of diseases. The co-infecting organisms can also follow independent trajectory. In either case, co-infections change host and pathogen metabolic microenvironments, compromise the host immune status, and affect microbial pathogenicity to influence tissue colonization. Immunomodulation by protozoa often adversely affects cellular and humoral immune responses against co-infecting bacterial pathogens and promotes bacterial persistence, and result in more severe disease symptoms. Although co-infections by protozoa and viruses also occur in humans, extensive studies are not yet conducted probably because of limited animal model systems available that can be used for both groups of pathogens. Immunosuppressive effects of protozoan infections can also attenuate vaccines efficacy, weaken immunological memory development, and thus attenuate protection against co-infecting pathogens. Due to increasing occurrence of parasitic infections, roles of acute to chronic protozoan infection on immunological changes need extensive investigations to improve understanding of the mechanistic details of specific immune responses alteration. In fact, this phenomenon should be seriously considered as one cause of breakthrough infections after vaccination against both bacterial and viral pathogens, and for the emergence of drug-resistant bacterial strains. Such studies would facilitate development and implementation of effective vaccination and treatment regimens to prevent or significantly reduce breakthrough infections.

4.
Pathogens ; 11(11)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36365060

RESUMEN

Tick-borne pathogens such as species of Borrelia, Babesia, Anaplasma, Rickettsia, and Ehrlichia are widespread in the United States and Europe among wildlife, in passerines as well as in domestic and farm animals. Transmission of these pathogens occurs by infected ticks during their blood meal, carnivorism, and through animal bites in wildlife, whereas humans can become infected either by an infected tick bite, through blood transfusion and in some cases, congenitally. The reservoir hosts play an important role in maintaining pathogens in nature and facilitate transmission of individual pathogens or of multiple pathogens simultaneously to humans through ticks. Tick-borne co-infections were first reported in the 1980s in white-footed mice, the most prominent reservoir host for causative organisms in the United States, and they are becoming a major concern for public health now. Various animal infection models have been used extensively to better understand pathogenesis of tick-borne pathogens and to reveal the interaction among pathogens co-existing in the same host. In this review, we focus on the prevalence of these pathogens in different reservoir hosts, animal models used to investigate their pathogenesis and host responses they trigger to understand diseases in humans. We also documented the prevalence of these pathogens as correlating with the infected ticks' surveillance studies. The association of tick-borne co-infections with other topics such as pathogens virulence factors, host immune responses as they relate to diseases severity, identification of vaccine candidates, and disease economic impact are also briefly addressed here.

5.
Front Immunol ; 13: 930287, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35924250

RESUMEN

Lyme disease is caused by Borrelia burgdorferi, and the pathogenesis of the disease is complex with both bacterial and host factors contributing to inflammatory responses. Lyme disease affects different organs including joints and results in arthritis. Immune responses stimulated by B. burgdorferi through toll-like receptors cause infiltration of leukocytes, which produce inflammatory cytokines and facilitate spirochete clearance. However, arthritic manifestations and chronic fatigue syndrome-like symptoms persist long after completion of antibiotic treatment regimens in a significant number of patients. To counter the effects of inflammation, treatment by non-steroidal anti-inflammatory drugs, hydroxychloroquine, or synovectomy to eradicate inflammatory arthritis in the involved joint could be employed; however, they often have long-term consequences. Acupuncture has been used for a long time in Asian medicine to diminish pain during various ailments, but the effects and its mechanism are just beginning to be explored. Control of inflammation by neuronal stimulation has been exploited as a systemic therapeutic intervention to arrest inflammatory processes. Our objective was to determine whether activation of the sciatic-vagal network by electroacupuncture on ST36 acupoint, which is used to control systemic inflammation in experimental models of infectious disorders such as endotoxemia, can also alleviate Lyme arthritis symptoms in mice. This aim was further strengthened by the reports that sciatic-vagal neuronal network stimulation can lead to dopamine production in the adrenal medulla and moderate the production of inflammatory factors. We first assessed whether electroacupuncture affects spirochete colonization to attenuate Lyme arthritis. Interestingly, bioluminescent B. burgdorferi burden detected by live imaging and qPCR were similar in electroacupuncture- and mock-treated mice, while electroacupuncture induced a lasting anti-inflammatory effect on mice. Despite the discontinuation of treatment at 2 weeks, the simultaneous decrease in neutrophils in the joints and inflammatory cytokine levels throughout the body at 4 weeks suggests a systemic and persistent effect of electroacupuncture that attenuates Lyme arthritis. Our results suggest that electroacupuncture-mediated anti-inflammatory responses could offer promising healthcare benefits in patients suffering from long-term Lyme disease manifestations.


Asunto(s)
Artritis , Electroacupuntura , Enfermedad de Lyme , Estimulación del Nervio Vago , Animales , Antiinflamatorios/uso terapéutico , Artritis/tratamiento farmacológico , Citocinas/uso terapéutico , Susceptibilidad a Enfermedades , Inflamación/tratamiento farmacológico , Enfermedad de Lyme/terapia , Ratones , Ratones Endogámicos C3H
6.
Front Cell Infect Microbiol ; 11: 685239, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34414129

RESUMEN

Malaria caused by Plasmodium species and transmitted by Anopheles mosquitoes affects large human populations, while Ixodes ticks transmit Babesia species and cause babesiosis. Babesiosis in animals has been known as an economic drain, and human disease has also emerged as a serious healthcare problem in the last 20-30 years. There is limited literature available regarding pathogenesis, immunity, and disease caused by Babesia spp. with their genomes sequenced only in the last decade. Therefore, using previous studies on Plasmodium as the foundation, we have compared similarities and differences in the pathogenesis of Babesia and host immune responses. Sexual life cycles of these two hemoparasites in their respective vectors are quite similar. An adult Anopheles female can take blood meal several times in its life such that it can both acquire and transmit Plasmodia to hosts. Since each tick stage takes blood meal only once, transstadial horizontal transmission from larva to nymph or nymph to adult is essential for the release of Babesia into the host. The initiation of the asexual cycle of these parasites is different because Plasmodium sporozoites need to infect hepatocytes before egressed merozoites can infect erythrocytes, while Babesia sporozoites are known to enter the erythrocytic cycle directly. Plasmodium metabolism, as determined by its two- to threefold larger genome than different Babesia, is more complex. Plasmodium replication occurs in parasitophorous vacuole (PV) within the host cells, and a relatively large number of merozoites are released from each infected RBC after schizogony. The Babesia erythrocytic cycle lacks both PV and schizogony. Cytoadherence that allows the sequestration of Plasmodia, primarily P. falciparum in different organs facilitated by prominent adhesins, has not been documented for Babesia yet. Inflammatory immune responses contribute to the severity of malaria and babesiosis. Antibodies appear to play only a minor role in the resolution of these diseases; however, cellular and innate immunity are critical for the clearance of both pathogens. Inflammatory immune responses affect the severity of both diseases. Macrophages facilitate the resolution of both infections and also offer cross-protection against related protozoa. Although the immunosuppression of adaptive immune responses by these parasites does not seem to affect their own clearance, it significantly exacerbates diseases caused by coinfecting bacteria during coinfections.


Asunto(s)
Anopheles , Babesia , Ixodes , Parásitos , Plasmodium , Animales , Eritrocitos , Femenino , Humanos , Mosquitos Vectores
7.
Cell Microbiol ; 23(9): e13350, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33938125

RESUMEN

Toll-like receptors (TLRs) are a class of membrane-spanning proteins of host cells. TLR2 and TLR4 are displayed on the surface of macrophages, neutrophils and dendritic cells and recognise structurally conserved microbial signatures defined as Pathogen associated molecular patterns (PAMPs). C3H mice are susceptible to tick-borne pathogens; Lyme disease causing Borrelia burgdorferi that manifests arthritis and carditis and Apicomplexan protozoan, Babesia microti (Bm) that causes significant parasitemia associated with erythrocytopenia and haemoglobinuria. B. burgdorferi lacks typical TLR4 ligand lipopolysaccharides (LPS) and Bm TLR ligand(s) remain unknown. Only Borrelia lipoproteins that signal through TLR2 are established as PAMPs of these pathogens for TLR2/TLR4. Infection of C3H mice with each pathogen individually resulted in increase in the percentage of splenic B, T and FcR+ cells while their co-infection significantly diminished levels of these cells and caused increased B. burgdorferi burden in the specific organs. The most pronounced inflammatory arthritis was observed in co-infected C3H/HeJ mice. Parasitemia levels and kinetics of resolution of Bm in both mice strains were not significantly different. Transfected HEK293 cells showed pronounced signalling by B. burgdorferi through TLR2 and to some extent by TLR4 while Bm and infected erythrocytes did not show any response confirming our results in mice.


Asunto(s)
Babesia microti , Babesiosis , Borrelia burgdorferi , Enfermedad de Lyme , Animales , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C3H , Receptor Toll-Like 4/genética
8.
Pathogens ; 9(9)2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32825529

RESUMEN

The first line therapy for Lyme disease is treatment with doxycycline, amoxicillin, or cefuroxime. In endemic regions, the persistence of symptoms in many patients after completion of antibiotic treatment remains a major healthcare concern. The causative agent of Lyme disease is a spirochete, Borrelia burgdorferi, an extreme auxotroph that cannot exist under free-living conditions and depends upon the tick vector and mammalian hosts to fulfill its nutritional needs. Despite lacking all major biosynthetic pathways, B. burgdorferi uniquely possesses three homologous and functional methylthioadenosine/S-adenosylhomocysteine nucleosidases (MTANs: Bgp, MtnN, and Pfs) involved in methionine and purine salvage, underscoring the critical role these enzymes play in the life cycle of the spirochete. At least one MTAN, Bgp, is exceptional in its presence on the surface of Lyme spirochetes and its dual functionality in nutrient salvage and glycosaminoglycan binding involved in host-cell adherence. Thus, MTANs offer highly promising targets for discovery of new antimicrobials. Here we report on our studies to evaluate five nucleoside analogs for MTAN inhibitory activity, and cytotoxic or cytostatic effects on a bioluminescently engineered strain of B. burgdorferi. All five compounds were either alternate substrates and/or inhibitors of MTAN activity, and reduced B. burgdorferi growth. Two inhibitors: 5'-deoxy-5'-iodoadenosine (IADO) and 5'-deoxy-5'-ethyl-immucillin A (dEt-ImmA) showed bactericidal activity. Thus, these inhibitors exhibit high promise and form the foundation for development of novel and effective antimicrobials to treat Lyme disease.

9.
Sci Rep ; 10(1): 10552, 2020 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-32601348

RESUMEN

Lyme borreliosis is the most prevalent vector-borne disease in northern hemisphere. Borrelia burgdorferi sensu lato spirochetes are transmitted by Ixodes species ticks. During a blood meal, these spirochetes are inoculated into the skin where they multiply and often spread to various target organs: disseminated skin sites, the central nervous system, the heart and large joints. The usual diagnosis of this disease relies on serological tests. However, in patients presenting persistent clinical manifestations, this indirect diagnosis is not capable of detecting an active infection. If the serological tests are positive, it only proves that exposure of an individual to Lyme spirochetes had occurred. Although culture and quantitative PCR detect active infection, currently used tests are not sensitive enough for wide-ranging applications. Animal models have shown that B. burgdorferi persists in the skin. We present here our targeted proteomics results using infected mouse skin biopsies that facilitate detection of this pathogen. We have employed several novel approaches in this study. First, the effect of lidocaine, a local anesthetic used for human skin biopsy, on B. burgdorferi presence was measured. We further determined the impact of topical corticosteroids to reactivate Borrelia locally in the skin. This local immunosuppressive compound helps follow-up detection of spirochetes by proteomic analysis of Borrelia present in the skin. This approach could be developed as a novel diagnostic test for active Lyme borreliosis in patients presenting disseminated persistent infection. Although our results using topical corticosteroids in mice are highly promising for recovery of spirochetes, further optimization will be needed to translate this strategy for diagnosis of Lyme disease in patients.


Asunto(s)
Corticoesteroides/uso terapéutico , Grupo Borrelia Burgdorferi/efectos de los fármacos , Lidocaína/uso terapéutico , Enfermedad de Lyme/tratamiento farmacológico , Piel/microbiología , Corticoesteroides/administración & dosificación , Animales , Borrelia burgdorferi , Lidocaína/administración & dosificación , Ratones , Piel/efectos de los fármacos
10.
Front Microbiol ; 11: 621654, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33408711

RESUMEN

Syphilis is a global, re-emerging sexually transmitted infection and congenital syphilis remains a major cause of adverse pregnancy outcomes due to bacterial infection in developing nations with a high rate of fetus loss. The molecular mechanisms involved in pathogenesis of the causative agent, Treponema pallidum subsp. pallidum remain poorly understood due to the difficulties of working with this pathogen, including the inability to grow it in pure culture. To reduce the spread of syphilis, we must first increase our knowledge of the virulence factors of T. pallidum and their contribution to syphilis manifestations. Tp0954 was predicted to be a surface lipoprotein of T. pallidum. Therefore, we experimentally demonstrated that Tp0954 is indeed a surface protein and further investigated its role in mediating bacterial attachment to various mammalian host cells. We found that expression of Tp0954 in a poorly adherent, but physiologically related derivative strain of the Lyme disease causing spirochete Borrelia burgdorferi B314 strain promotes its binding to epithelial as well as non-epithelial cells including glioma and placental cell lines. We also found that Tp0954 expression facilitates binding of this strain to purified dermatan sulfate and heparin, and also that bacterial binding to mammalian cell lines is mediated by the presence of heparan sulfate and dermatan sulfate in the extracellular matrix of the specific cell lines. These results suggest that Tp0954 may be involved not only in initiating T. pallidum infection by colonizing skin epithelium, but it may also contribute to disseminated infection and colonization of distal tissues. Significantly, we found that Tp0954 promotes binding to the human placental choriocarcinoma BeWo cell line, which is of trophoblastic endocrine cell type, as well as human placental tissue sections, suggesting its role in placental colonization and possible contribution to transplacental transmission of T. pallidum. Altogether, these novel findings offer an important step toward unraveling syphilis pathogenesis, including placental colonization and T. pallidum vertical transmission from mother to fetus during pregnancy.

11.
Biochim Biophys Acta Gen Subj ; 1864(1): 129455, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31669585

RESUMEN

BACKGROUND: Borrelia burgdorferi causes Lyme disease, the most common tick-borne illness in the United States. The Center for Disease Control and Prevention estimates that the occurrence of Lyme disease in the U.S. has now reached approximately 300,000 cases annually. Early stage Borrelia burgdorferi infections are generally treatable with oral antibiotics, but late stage disease is more difficult to treat and more likely to lead to post-treatment Lyme disease syndrome. METHODS: Here we examine three unique 5'-methylthioadenosine/S-adenosylhomocysteine (MTA/SAH) nucleosidases (MTNs or MTANs, EC 3.2.2.9) responsible for salvage of adenine and methionine in B. burgdorferi and explore their potential as antibiotic targets to treat Lyme disease. Recombinant Borrelia MTNs were expressed and purified from E. coli. The enzymes were extensively characterized for activity, specificity, and inhibition using a UV spectrophotometric assay. In vitro antibiotic activities of MTN inhibitors were assessed using a bioluminescent BacTiter-Glo™ assay. RESULTS: The three Borrelia MTNs showed unique activities against the native substrates MTA, SAH, and 5'-deoxyadenosine. Analysis of substrate analogs revealed that specific activity rapidly dropped as the length of the 5'-alkylthio substitution increased. Non-hydrolysable nucleoside transition state analogs demonstrated sub-nanomolar enzyme inhibition constants. Lastly, two late stage transition state analogs exerted in vitro IC50 values of 0.3-0.4 µg/mL against cultured B. burgdorferi cells. CONCLUSION: B. burgdorferi is unusual in that it expresses three distinct MTNs (cytoplasmic, membrane bound, and secreted) that are effectively inactivated by nucleoside analogs. GENERAL SIGNIFICANCE: The Borrelia MTNs appear to be promising targets for developing new antibiotics to treat Lyme disease.


Asunto(s)
Antibacterianos/uso terapéutico , Borrelia burgdorferi/enzimología , Enfermedad de Lyme/tratamiento farmacológico , N-Glicosil Hidrolasas/genética , Borrelia burgdorferi/efectos de los fármacos , Borrelia burgdorferi/patogenicidad , Desoxiadenosinas/metabolismo , Escherichia coli/genética , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Humanos , Enfermedad de Lyme/enzimología , Enfermedad de Lyme/microbiología , N-Glicosil Hidrolasas/antagonistas & inhibidores , S-Adenosilhomocisteína/metabolismo , Tionucleósidos/metabolismo
12.
Pathogens ; 8(3)2019 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-31370180

RESUMEN

The incidence and geographic distribution of human babesiosis is growing in the U.S. Its major causative agent is the protozoan parasite, Babesia microti. B. microti is transmitted to humans primarily through the bite of Ixodes scapularis ticks, which are vectors for a number of other pathogens. Other routes of B. microti transmission are blood transfusion and in rare cases of mother-to-foetus transmission, through the placenta. This review discusses the current literature on mammalian coinfection with B. microti and Borrelia burgdorferi, the causative agent Lyme disease.

13.
Front Microbiol ; 10: 1596, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31354683

RESUMEN

Lyme disease is the most prominent tick-borne disease in the United States. Co-infections with the tick-transmitted pathogens Babesia microti and Borrelia burgdorferi sensu stricto are becoming a serious health problem. B. burgdorferi is an extracellular spirochete that causes Lyme disease while B. microti is a protozoan that infects erythrocytes and causes babesiosis. Testing of donated blood for Babesia species is not currently mandatory due to unavailability of an FDA approved test. Transmission of this protozoan by blood transfusion often results in high morbidity and mortality in recipients. Infection of C3H/HeJ mice with B. burgdorferi and B. microti individually results in inflammatory Lyme disease and display of human babesiosis-like symptoms, respectively. Here we use this mouse model to provide a detailed investigation of the reciprocal influence of the two pathogens on each other during co-infection. We show that B. burgdorferi infection attenuates parasitemia in mice while B. microti subverts the splenic immune response, such that a marked decrease in splenic B and T cells, reduction in antibody levels and diminished functional humoral immunity, as determined by spirochete opsonophagocytosis, are observed in co-infected mice compared to only B. burgdorferi infected mice. Furthermore, immunosuppression by B. microti in co-infected mice showed an association with enhanced Lyme disease manifestations. This study demonstrates the effect of only simultaneous infection by B. burgdorferi and B. microti on each pathogen, immune response and on disease manifestations with respect to infection by the spirochete and the parasite. In our future studies, we will examine the overall effects of sequential infection by these pathogens on host immune responses and disease outcomes.

14.
PLoS Negl Trop Dis ; 13(5): e0007401, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31071095

RESUMEN

BACKGROUND: Syphilis affects approximately 11 million people each year globally, and is the third most prevalent sexually transmitted bacterial infection in the United States. Inability to independently culture and genetically manipulate Treponema pallidum subsp. pallidum, the causative agent of this disease, has hindered our understanding of the molecular mechanisms of syphilis pathogenesis. Here, we used the non-infectious and poorly adherent B314 strain of the Lyme disease-causing spirochete, Borrelia burgdorferi, to express two variants of a known fibronectin-binding adhesin, Tp0136, from T. pallidum SS14 and Nichols strains. Using this surrogate system, we investigated the ability of Tp0136 in facilitating differential binding to mammalian cell lines offering insight into the possible role of this virulence factor in colonization of specific tissues by T. pallidum during infection. PRINCIPAL FINDINGS: Expression of Tp0136 could be detected on the surface of B. burgdorferi by indirect immunofluorescence assay using sera from a secondary syphilis patient that does not react with intact B314 spirochetes transformed with the empty vector. Increase in Tp0136-mediated adherence of B314 strain to human epithelial HEK293 cells was observed with comparable levels of binding exhibited by both Tp0136 alleles. Adherence of Tp0136-expressing B314 was highest to epithelial HEK293 and C6 glioma cells. Gain in binding of B314 strain expressing Tp0136 to purified fibronectin and poor binding of these spirochetes to the fibronectin-deficient cell line (HEp-2) indicated that Tp0136 interaction with this host receptor plays an important role in spirochetal attachment to mammalian cells. Furthermore, preincubation of these cell lines with fibronectin-binding peptide from Staphylococcus aureus FnbA-2 protein significantly inhibited binding of B314 expressing Tp0136. CONCLUSIONS: Our results show that Tp0136 facilitates differential level of binding to cell lines representing various host tissues, which highlights the importance of this protein in colonization of human organs by T. pallidum and resulting syphilis pathogenesis.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Fibronectinas/metabolismo , Sífilis/metabolismo , Sífilis/microbiología , Treponema pallidum/metabolismo , Adhesinas Bacterianas/genética , Animales , Borrelia burgdorferi/genética , Borrelia burgdorferi/metabolismo , Femenino , Fibronectinas/genética , Expresión Génica , Células HEK293 , Humanos , Ratones , Ratones Endogámicos BALB C , Unión Proteica , Sífilis/genética , Treponema pallidum/genética
15.
Vaccine ; 37(13): 1807-1818, 2019 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-30797635

RESUMEN

BACKGROUND: Syphilis is resurgent in many developed countries and still prevalent in developing nations. Current and future control campaigns would benefit from the development of a vaccine, but although promising vaccine candidates were identified among the putative surface-exposed integral outer membrane proteins of the syphilis spirochete, immunization experiments in the rabbit model using recombinant antigens have failed to fully protect animals upon infectious challenge. We speculated that such recombinant immunogens, purified under denaturing conditions from Escherichia coli prior to immunization might not necessarily harbor their original structure, and hypothesized that enhanced protection would result from performing similar immunization/challenge experiments with native antigens. METHODS: To test our hypothesis, we engineered non-infectious Borrelia burgdorferi strains to express the tp0897 (tprK) and tp0435 genes of Treponema pallidum subsp. pallidum and immunized two groups of rabbits by injecting recombinant strains intramuscularly with no adjuvant. TprK is a putative integral outer membrane protein of the syphilis agent, while tp0435 encodes the highly immunogenic T. pallidum 17-kDa lipoprotein, a periplasmic antigen that was also shown on the pathogen surface. Following development of a specific host immune response to these antigens as the result of immunization, animals were challenged by intradermal inoculation of T. pallidum. Cutaneous lesion development was monitored and treponemal burden within lesions were assessed by dark-field microscopy and RT-qPCR, in comparison to control rabbits. RESULTS: Partial protection was observed in rabbits immunized with B. burgdorferi expressing TprK while immunity to Tp0435 was not protective. Analysis of the humoral response to TprK antigen suggested reactivity to conformational epitopes. CONCLUSIONS: Immunization with native antigens might not be sufficient to obtain complete protection to infection. Nonetheless we showed that non-infectious B. burgdorferi can be an effective carrier to deliver and elicit a specific host response to T. pallidum antigens to assess the efficacy of syphilis vaccine candidates.


Asunto(s)
Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Vacunas Bacterianas/inmunología , Borrelia burgdorferi/genética , Expresión Génica , Porinas/inmunología , Sífilis/prevención & control , Treponema pallidum/inmunología , Animales , Anticuerpos Antibacterianos/inmunología , Antígenos Bacterianos/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Vacunas Bacterianas/genética , Ensayo de Inmunoadsorción Enzimática , Epítopos/química , Epítopos/inmunología , Técnica del Anticuerpo Fluorescente , Inmunidad Celular , Inmunización , Espectrometría de Masas , Ratones , Péptidos/síntesis química , Péptidos/inmunología , Porinas/química , Porinas/genética , Conejos , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Sífilis/inmunología , Sífilis/patología , Treponema pallidum/genética
16.
Int J Parasitol ; 49(2): 145-151, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30367867

RESUMEN

The incidence of babesiosis, Lyme disease and other tick-borne diseases has increased steadily in Europe and North America during the last five decades. Babesia microti is transmitted by species of Ixodes, the same ticks that transmit the Lyme disease-causing spirochete, Borrelia burgdorferi. B. microti can also be transmitted through transfusion of blood products and is the most common transfusion-transmitted infection in the U.S.A. Ixodes ticks are commonly infected with both B. microti and B. burgdorferi, and are competent vectors for transmitting them together into hosts. Few studies have examined the effects of coinfections on humans and they had somewhat contradictory results. One study linked coinfection with B. microti to a greater number of symptoms of overall disease in patients, while another report indicated that B. burgdorferi infection either did not affect babesiosis symptoms or decreased its severity. Mouse models of infection that manifest pathological effects similar to those observed in human babesiosis and Lyme disease offer a unique opportunity to thoroughly investigate the effects of coinfection on the host. Lyme disease has been studied using the susceptible C3H mouse infection model, which can also be used to examine B. microti infection to understand pathological mechanisms of human diseases, both during a single infection and during coinfections. We observed that high B. microti parasitaemia leads to low haemoglobin levels in infected mice, reflecting the anaemia observed in human babesiosis. Similar to humans, B. microti coinfection appears to enhance the severity of Lyme disease-like symptoms in mice. Coinfected mice have lower peak B. microti parasitaemia compared to mice infected with B. microti alone, which may reflect attenuation of babesiosis symptoms reported in some human coinfections. These findings suggest that B. burgdorferi coinfection attenuates parasite growth while B. microti presence exacerbates Lyme disease-like symptoms in mice.


Asunto(s)
Babesia microti/crecimiento & desarrollo , Babesiosis/complicaciones , Babesiosis/patología , Borrelia burgdorferi/crecimiento & desarrollo , Coinfección/patología , Enfermedad de Lyme/complicaciones , Enfermedad de Lyme/patología , Animales , Modelos Animales de Enfermedad , Ratones Endogámicos C3H
17.
PLoS One ; 13(5): e0196748, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29746483

RESUMEN

BACKGROUND: Tick-borne infections have been increasing steadily over the years, with co-infections with Borrelia burgdorferi and Babesia microti/divergens emerging as a serious health problem. B. burgdorferi is a spirochetal bacterium that causes Lyme disease while protozoan pathogens belonging to Babesia species are responsible for babesiosis. Currently used serological tests do not always detect acute Lyme disease or babesiosis, and fail to differentiate cured patients from those who get re-infected. This is a major problem for proper diagnosis particularly in regions endemic for tick-borne diseases. Microscopy based evaluation of babesiosis is confirmatory but is labor intensive and insensitive such that many asymptomatic patients remain undetected and donate blood resulting in transfusion transmitted babesiosis. RESULTS: We conducted multiplex qPCR for simultaneous diagnosis of active Lyme disease and babesiosis in 192 blood samples collected from a region endemic for both diseases. We document qPCR results obtained from testing of each sample three times to detect infection with each pathogen separately or together. Results for Lyme disease by qPCR were also compared with serological tests currently used for Lyme disease when available. Considering at least two out of three test results for consistency, 18.2% of patients tested positive for Lyme disease, 18.7% for co-infection with B. burgdorferi and B. microti and 6.3% showed only babesiosis. CONCLUSIONS: With an 80% sensitivity for detection of Lyme disease, and ability to detect co-infection with B. microti, multiplex qPCR can be employed for diagnosis of these diseases to start appropriate treatment in a timely manner.


Asunto(s)
Babesia microti/genética , Babesiosis/diagnóstico por imagen , Babesiosis/parasitología , Borrelia burgdorferi/genética , Enfermedad de Lyme/diagnóstico , Enfermedad de Lyme/microbiología , Animales , Coinfección/diagnóstico , Coinfección/microbiología , Coinfección/parasitología , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Enfermedades por Picaduras de Garrapatas/diagnóstico , Enfermedades por Picaduras de Garrapatas/microbiología , Enfermedades por Picaduras de Garrapatas/parasitología , Garrapatas/genética
18.
Front Microbiol ; 9: 85, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29445365

RESUMEN

Babesia microti is a malaria-like parasite, which infects ∼2000 people annually, such that babesiosis is now a notifiable disease in the United States. Immunocompetent individuals often remain asymptomatic and are tested only after they feel ill. Susceptible C3H/HeJ mice show several human-like disease manifestations and are ideal to study pathogenesis of Babesia species. In this study, we examined parasitemia of B. microti at different time points and assessed its impact on hemoglobin levels in blood, on spleen pathology and overall immune response in C3H/HeJ mice. Peak parasitemia of 42.5% was immediately followed by diminished hemoglobin level. Parasitemia at 21 days of infection was barely detectable by microscopy presented 5.7 × 108 to 5.9 × 109B. microti DNA copies confirming the sensitivity of our qPCR. We hypothesize that qPCR detects DNA released from recently lysed parasites or from extracellular B. microti in blood, which are not easily detected in blood smears and might result in under-diagnosis of babesiosis in patients. Splenectomized patients have been reported to show increased babesiosis severity and result in high morbidity and mortality. These results emphasize the importance of splenic immunity in resolution of B. microti infection. Splenomegaly in infected mice associated with destruction of marginal zone with lysed erythrocytes and released B. microti life forms in our experiments support this premise. At conclusion of the experiment at 21 days post-infection, significant splenic B and T cells depletion and increase in macrophages levels were observed in B. microti infected mice suggesting a role of macrophage in disease resolution. Infected mice also showed significantly higher plasmatic concentration of CD4 Th1 cells secreted cytokines such as IL-2 and IFN-γ while cytokines such as IL-4, IL-5, and IL-13 secreted by Th2 cells increase was not always significant. Thus, Th1 cells-mediated immunity appears to be important in clearance of this intracellular pathogen. Significant increase in IL-6 that promotes differentiation of Th17 cells was observed but it resulted in only moderate change in IL-17A, IL-17F, IL-21, and IL-22, all secreted by Th17 cells. A similar immune response to Trypanosoma infection has been reported to influence the clearance of this protozoan, and co-infecting pathogen(s).

19.
Front Immunol ; 9: 2891, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30619263

RESUMEN

Lyme disease is the most prominent tick-borne disease with 300,000 cases estimated by CDC every year while ~2,000 cases of babesiosis occur per year in the United States. Simultaneous infection with Babesia microti and Borrelia burgdorferi are now the most common tick-transmitted coinfections in the U.S.A., and they are a serious health problem because coinfected patients show more intense and persisting disease symptoms. B. burgdorferi is an extracellular spirochete responsible for systemic Lyme disease while B. microti is a protozoan that infects erythrocytes and causes babesiosis. Immune status and spleen health are important for resolution of babesiosis, which is more severe and even fatal in the elderly and splenectomized patients. Therefore, we investigated the effect of each pathogen on host immune response and consequently on severity of disease manifestations in both young, and 30 weeks old C3H mice. At the acute stage of infection, Th1 polarization in young mice spleen was associated with increased IFN-γ and TNF-α producing T cells and a high Tregs/Th17 ratio. Together, these changes could help in the resolution of both infections in young mice and also prevent fatality by B. microti infection as observed with WA-1 strain of Babesia. In older mature mice, Th2 polarization at acute phase of B. burgdorferi infection could play a more effective role in preventing Lyme disease symptoms. As a result, enhanced B. burgdorferi survival and increased tissue colonization results in severe Lyme arthritis only in young coinfected mice. At 3 weeks post-infection, diminished pathogen-specific antibody production in coinfected young, but not older mice, as compared to mice infected with each pathogen individually may also contribute to increased inflammation observed due to B. burgdorferi infection, thus causing persistent Lyme disease observed in coinfected mice and reported in patients. Thus, higher combined proinflammatory response to B. burgdorferi due to Th1 and Th17 cells likely reduced B. microti parasitemia significantly only in young mice later in infection, while the presence of B. microti reduced humoral immunity later in infection and enhanced tissue colonization by Lyme spirochetes in these mice even at the acute stage, thereby increasing inflammatory arthritis.


Asunto(s)
Babesia microti/inmunología , Babesiosis/inmunología , Borrelia burgdorferi/inmunología , Coinfección/inmunología , Enfermedad de Lyme/inmunología , Índice de Severidad de la Enfermedad , Factores de Edad , Animales , Babesiosis/diagnóstico , Babesiosis/parasitología , Coinfección/diagnóstico , Coinfección/microbiología , Modelos Animales de Enfermedad , Femenino , Humanos , Enfermedad de Lyme/diagnóstico , Enfermedad de Lyme/microbiología , Ratones , Ratones Endogámicos C3H , Ratones SCID
20.
J Genet Eng Biotechnol ; 16(1): 39-46, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30647702

RESUMEN

In the current study, bacteria isolated from sea water samples of Murdeshwar, Karnataka, were screened for the production of alkaline protease by culturing them onto skim milk agar media. Of the isolated bacteria, Bacillus subtilis, Pseudomonas aeruginosa and Alcaligenes faecalis showed distinct zones of hydrolysis due to enzyme production. They were each inoculated into enzyme production media under submerged fermentation conditions at 37 °C for 48 h with a constant agitation of 120 rpm. Partial purification of alkaline protease was carried out by isoelectric precipitation. Enzyme activity was determined under varying conditions of pH, incubation temperature, different substrates, carbon and nitrogen sources and salt concentrations using sigma's universal protease activity assay. Enzyme immobilization was carried out using 2% Sodium alginate and 0.1 M ice cold CaCl2 and its activity under varying pH, temperature conditions and detergent compatibility was assayed. Efficacy of enzyme in stain removal was tested and haemolysis was observed within of 60 s which resulted in removal of the stain. Among the three organisms, enzyme from Bacillus subtilis showed highest activity in all cases indicating that it was the most ideal organism for enzyme production.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...