Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
J Liposome Res ; 34(1): 113-123, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37493091

RESUMEN

Spherical structures built from uni- and multilamellar lipid bilayers (LUV and MLV) are nowadays considered not just as nanocarriers of various kinds of therapeutics, but also as the vehicles that, when coupled with gold (Au) nanoparticles (NPs), can also serve as a tool for imaging and discriminating healthy and diseased tissues. Since the presence of Au NPs or their aggregates may affect the properties of the drug delivery vehicle, we investigated how the shape and position of Au NP aggregates adsorbed on the surface of MLV affect the arrangement and conformation of lipid molecules. By preparing MLVs constituted from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) in the presence of uncoated Au NP aggregates found i) both within liposome core and on the surface of the outer lipid bilayer, or ii) adsorbed on the outer lipid bilayer surface only, we demonstrated the maintenance of lipid bilayer integrity by microscopic techniques (cryo-TEM, and AFM). The employment of SERS and FTIR-ATR techniques enabled us not only to elucidate the lipid interaction pattern and their orientation in regards to Au NP aggregates but also unequivocally confirmed the impact of Au NP aggregates on the persistence/breaking of van der Waals interactions between hydrocarbon chains of DPPC.


Asunto(s)
Nanopartículas del Metal , Fosfatidilcolinas , Fosfatidilcolinas/química , Liposomas/química , Membrana Dobles de Lípidos/química , Oro/química
2.
Antibiotics (Basel) ; 12(7)2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37508312

RESUMEN

Cell-penetrating peptides (CPPs) are short peptides built up from dominantly cationic and hydrophobic amino acid residues with a distinguished ability to pass through the cell membrane. Due to the possibility of linking and delivering the appropriate cargo at the desired location, CPPs are considered an economic and less invasive alternative to antibiotics. Besides knowing that their membrane passage mechanism is a complex function of CPP chemical composition, the ionic strength of the solution, and the membrane composition, all other details on how they penetrate cell membranes are rather vague. The aim of this study is to elucidate the ad(de)sorption of arginine-/lysine- and phenylalanine-rich peptides on a lipid membrane composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipids. DSC and temperature-dependent UV-Vis measurements confirmed the impact of the adsorbed peptides on thermotropic properties of DPPC, but in an inconclusive way. On the other hand, FTIR spectra acquired at 30 °C and 50 °C (when DPPC lipids are found in the gel and fluid phase, respectively) unambiguously confirmed the proton transfer between particular titratable functional groups of R5F2/K5F2 that highly depend on their immediate surroundings (DPPC or a phosphate buffer). Molecular dynamic simulations showed that both peptides may adsorb onto the bilayer, but K5F2 desorbs more easily and favors the solvent, while R5F2 remains attached. The results obtained in this work highlight the importance of proton transfer in the design of CPPs with their desired cargo, as its charge and composition dictates the possibility of entering the cell.

3.
Biochim Biophys Acta Biomembr ; 1865(4): 184122, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36739930

RESUMEN

The ability of arginine-rich peptides to cross the lipid bilayer and enter cytoplasm, unlike their lysine-based analogues, is intensively studied in the context of cell-penetrating peptides. Although the experiments have not yet reconstructed their internalization mechanism, the computational studies have shown that the type or charge of lipid polar groups is one of the crucial factors in their translocation. In order to gain more detailed insight into the interaction of guanidinium (Gdm+) and ammonium (NH4+) cations, as important building blocks in arginine and lysine amino acids, with lipid bilayers, we conducted the experimental and computational study that tackles this phenomenon. The adsorption of Gdm+ and NH4+ on lipid bilayers prepared from a zwitterionic (DPPC) and an anionic (DPPS) lipid was examined by thermoanalytic and spectroscopic techniques. Using temperature-dependent UV-Vis spectroscopy and DSC calorimetry we determined the impact of Gdm+ and NH4+ on the thermotropic properties of lipid bilayers. FTIR data, along with molecular dynamics simulations, unraveled the molecular-level details on the nature of their interactions, showing the proton transfer between NH4+ and DPPS, but not between Gdm+ and DPPS. The findings originated from this work imply that Gdm+ and NH4+ form qualitatively different interactions with lipids of different charge which is reflected in the physico-chemical interactions that arginine-and lysine-based peptides establish at a complex and chemically heterogeneous environment such as the biological membrane.


Asunto(s)
Péptidos de Penetración Celular , Membrana Dobles de Lípidos , Membrana Dobles de Lípidos/química , Fosfatidilserinas/química , Guanidina , Simulación de Dinámica Molecular , Lisina , Análisis Espectral , Lecitinas , Calorimetría , Arginina , Cationes
4.
Membranes (Basel) ; 13(1)2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36676890

RESUMEN

Although single-lipid bilayers are usually considered models of eukaryotic plasma membranes, their research drops drastically when it comes to exclusively anionic lipid membranes. Being a major anionic phospholipid in the inner leaflet of eukaryote membranes, phosphatidylserine-constituted lipid membranes were occasionally explored in the form of multilamellar liposomes (MLV), but their inherent instability caused a serious lack of efforts undertaken on large unilamellar liposomes (LUVs) as more realistic model membrane systems. In order to compensate the existing shortcomings, we performed a comprehensive calorimetric, spectroscopic and MD simulation study of time-varying structural features of LUV made from 1,2-dipalmitoyl-sn-glycero-3-phospho-L-serine (DPPS), whereas the corresponding MLV were examined as a reference. A substantial uncertainty of UV/Vis data of LUV from which only Tm was unambiguously determined (53.9 ± 0.8 °C), along with rather high uncertainty on the high-temperature range of DPPS melting profile obtained from DSC (≈50-59 °C), presumably reflect distinguished surface structural features in LUV. The FTIR signatures of glycerol moiety and those originated from carboxyl group serve as a strong support that in LUV, unlike in MLV, highly curved surfaces occur continuously, whereas the details on the attenuation of surface features in MLV were unraveled by molecular dynamics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...