Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Nature ; 623(7989): 1053-1061, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37844613

RESUMEN

Inflammation is a hallmark of cancer1. In patients with cancer, peripheral blood myeloid expansion, indicated by a high neutrophil-to-lymphocyte ratio, associates with shorter survival and treatment resistance across malignancies and therapeutic modalities2-5. Whether myeloid inflammation drives progression of prostate cancer in humans remain unclear. Here we show that inhibition of myeloid chemotaxis can reduce tumour-elicited myeloid inflammation and reverse therapy resistance in a subset of patients with metastatic castration-resistant prostate cancer (CRPC). We show that a higher blood neutrophil-to-lymphocyte ratio reflects tumour myeloid infiltration and tumour expression of senescence-associated mRNA species, including those that encode myeloid-chemoattracting CXCR2 ligands. To determine whether myeloid cells fuel resistance to androgen receptor signalling inhibitors, and whether inhibiting CXCR2 to block myeloid chemotaxis reverses this, we conducted an investigator-initiated, proof-of-concept clinical trial of a CXCR2 inhibitor (AZD5069) plus enzalutamide in patients with metastatic CRPC that is resistant to androgen receptor signalling inhibitors. This combination was well tolerated without dose-limiting toxicity and it decreased circulating neutrophil levels, reduced intratumour CD11b+HLA-DRloCD15+CD14- myeloid cell infiltration and imparted durable clinical benefit with biochemical and radiological responses in a subset of patients with metastatic CRPC. This study provides clinical evidence that senescence-associated myeloid inflammation can fuel metastatic CRPC progression and resistance to androgen receptor blockade. Targeting myeloid chemotaxis merits broader evaluation in other cancers.


Asunto(s)
Antagonistas de Receptores Androgénicos , Antineoplásicos , Quimiotaxis , Resistencia a Antineoplásicos , Células Mieloides , Neoplasias de la Próstata Resistentes a la Castración , Humanos , Masculino , Quimiotaxis/efectos de los fármacos , Progresión de la Enfermedad , Inflamación/tratamiento farmacológico , Inflamación/patología , Antígeno Lewis X/metabolismo , Células Mieloides/efectos de los fármacos , Células Mieloides/patología , Metástasis de la Neoplasia , Próstata/efectos de los fármacos , Próstata/metabolismo , Próstata/patología , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Receptores Androgénicos/metabolismo , Antagonistas de Receptores Androgénicos/farmacología , Antagonistas de Receptores Androgénicos/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
2.
J Clin Invest ; 133(22)2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37751307

RESUMEN

Aberrant androgen receptor (AR) signaling drives prostate cancer (PC), and it is a key therapeutic target. Although initially effective, the generation of alternatively spliced AR variants (AR-Vs) compromises efficacy of treatments. In contrast to full-length AR (AR-FL), AR-Vs constitutively activate androgenic signaling and are refractory to the current repertoire of AR-targeting therapies, which together drive disease progression. There is an unmet clinical need, therefore, to develop more durable PC therapies that can attenuate AR-V function. Exploiting the requirement of coregulatory proteins for AR-V function has the capacity to furnish tractable routes for attenuating persistent oncogenic AR signaling in advanced PC. DNA-PKcs regulates AR-FL transcriptional activity and is upregulated in both early and advanced PC. We hypothesized that DNA-PKcs is critical for AR-V function. Using a proximity biotinylation approach, we demonstrated that the DNA-PK holoenzyme is part of the AR-V7 interactome and is a key regulator of AR-V-mediated transcription and cell growth in models of advanced PC. Crucially, we provide evidence that DNA-PKcs controls global splicing and, via RBMX, regulates the maturation of AR-V and AR-FL transcripts. Ultimately, our data indicate that targeting DNA-PKcs attenuates AR-V signaling and provide evidence that DNA-PKcs blockade is an effective therapeutic option in advanced AR-V-positive patients with PC.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Receptores Androgénicos , Masculino , Humanos , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/genética , Dominio Catalítico , Línea Celular Tumoral , Andrógenos/uso terapéutico , ADN , Regulación Neoplásica de la Expresión Génica
3.
Oncogene ; 42(30): 2347-2359, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37355762

RESUMEN

Therapy resistance to second-generation androgen receptor (AR) antagonists, such as enzalutamide, is common in patients with advanced prostate cancer (PCa). To understand the metabolic alterations involved in enzalutamide resistance, we performed metabolomic, transcriptomic, and cistromic analyses of enzalutamide-sensitive and -resistant PCa cells, xenografts, patient-derived organoids, patient-derived explants, and tumors. We noted dramatically higher basal and inducible levels of reactive oxygen species (ROS) in enzalutamide-resistant PCa and castration-resistant PCa (CRPC), in comparison to enzalutamide-sensitive PCa cells or primary therapy-naive tumors respectively. Unbiased metabolomic evaluation identified that glutamine metabolism was consistently upregulated in enzalutamide-resistant PCa cells and CRPC tumors. Stable isotope tracing studies suggest that this enhanced glutamine metabolism drives an antioxidant program that allows these cells to tolerate higher basal levels of ROS. Inhibition of glutamine metabolism with either a small-molecule glutaminase inhibitor or genetic knockout of glutaminase enhanced ROS levels, and blocked the growth of enzalutamide-resistant PCa. The critical role of compensatory antioxidant pathways in maintaining enzalutamide-resistant PCa cells was validated by targeting another antioxidant program driver, ferredoxin 1. Taken together, our data identify a metabolic need to maintain antioxidant programs and a potentially targetable metabolic vulnerability in enzalutamide-resistant PCa.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Receptores Androgénicos/genética , Antioxidantes/farmacología , Glutaminasa , Glutamina , Especies Reactivas de Oxígeno , Resistencia a Antineoplásicos/genética , Nitrilos , Antagonistas de Receptores Androgénicos/farmacología , Línea Celular Tumoral
5.
Clin Cancer Res ; 28(14): 3104-3115, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35552383

RESUMEN

PURPOSE: Prostate-specific membrane antigen (PSMA) targeting therapies such as Lutetium-177 (177Lu)-PSMA-617 are affecting outcomes from metastatic castration-resistant prostate cancer (mCRPC). However, a significant subset of patients have prostate cancer cells lacking PSMA expression, raising concerns about treatment resistance attributable at least in part to heterogeneous PSMA expression. We have previously demonstrated an association between high PSMA expression and DNA damage repair defects in mCRPC biopsies and therefore hypothesized that DNA damage upregulates PSMA expression. EXPERIMENTAL DESIGN: To test this relationship between PSMA and DNA damage we conducted a screen of 147 anticancer agents (NCI/NIH FDA-approved anticancer "Oncology Set") and treated tumor cells with repeated ionizing irradiation. RESULTS: The topoisomerase-2 inhibitors, daunorubicin and mitoxantrone, were identified from the screen to upregulate PSMA protein expression in castration-resistant LNCaP95 cells; this result was validated in vitro in LNCaP, LNCaP95, and 22Rv1 cell lines and in vivo using an mCRPC patient-derived xenograft model CP286 identified to have heterogeneous PSMA expression. As double-strand DNA break induction by topoisomerase-2 inhibitors upregulated PSMA, we next studied the impact of ionizing radiation on PSMA expression; this also upregulated PSMA protein expression in a dose-dependent fashion. CONCLUSIONS: The results presented herein are the first, to our knowledge, to demonstrate that PSMA is upregulated in response to double-strand DNA damage by anticancer treatment. These data support the study of rational combinations that maximize the antitumor activity of PSMA-targeted therapeutic strategies by upregulating PSMA.


Asunto(s)
Antígenos de Superficie , Antineoplásicos , Daño del ADN , Glutamato Carboxipeptidasa II , Neoplasias de la Próstata Resistentes a la Castración , Animales , Antígenos de Superficie/genética , Antígenos de Superficie/metabolismo , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Glutamato Carboxipeptidasa II/genética , Glutamato Carboxipeptidasa II/metabolismo , Humanos , Masculino , Ratones , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Eur Urol Focus ; 8(5): 1157-1168, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34167925

RESUMEN

CONTEXT: Prostate-specific membrane antigen (PSMA) is a promising, novel theranostic target in advanced prostate cancer (PCa). Multiple PSMA-targeted therapies are currently in clinical development, with some agents showing impressive antitumour activity, although optimal patient selection and therapeutic resistance remain ongoing challenges. OBJECTIVE: To review the biology of PSMA and recent advances in PSMA-targeted therapies in PCa, and to discuss potential strategies for patient selection and further therapeutic development. EVIDENCE ACQUISITION: A comprehensive literature search was performed using PubMed and review of American Society of Clinical Oncology and European Society of Medical Oncology annual meeting abstracts up to April 2021. EVIDENCE SYNTHESIS: PSMA is a largely extracellular protein that is frequently, but heterogeneously, expressed by PCa cells. PSMA expression is associated with disease progression, worse clinical outcomes and the presence of tumour defects in DNA damage repair (DDR). PSMA is also expressed by other cancer cell types and is implicated in glutamate and folate metabolism. It may confer a tumour survival advantage in conditions of cellular stress. PSMA regulation is complex, and recent studies have shed light on interactions with androgen receptor, PI3K/Akt, and DDR signalling. A phase 2 clinical trial has shown that 177Lu-PSMA-617 causes tumour shrinkage and delays disease progression in a significant subset of patients with metastatic castration-resistant PCa in comparison to second-line chemotherapy. Numerous novel PSMA-targeting immunotherapies, small molecules, and antibody therapies are currently in clinical development, including in earlier stages of PCa, with emerging evidence of antitumour activity. To date, the regulation and function of PSMA in PCa cells remain poorly understood. CONCLUSIONS: There has been rapid recent progress in PSMA-targeted therapies for the management of advanced PCa. Dissection of PSMA biology will help to identify biomarkers for and resistance mechanisms to these therapies and facilitate further therapeutic development to improve PCa patient outcomes. PATIENT SUMMARY: There have been major advances in the development of therapies targeting a molecule, PSMA, in PCa. Radioactive molecules targeting PSMA can cause tumour shrinkage and delay progression in some patients with lethal disease. Future studies are needed to determine which patients are most likely to respond, and how other treatments can be combined with therapies targeting PSMA so that more patients may benefit.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Neoplasias de la Próstata , Masculino , Humanos , Próstata/patología , Radiofármacos , Neoplasias de la Próstata/patología , Progresión de la Enfermedad , Biología
7.
Annu Rev Pharmacol Toxicol ; 62: 131-153, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34449248

RESUMEN

Owing to the development of multiple novel therapies, there has been major progress in the treatment of advanced prostate cancer over the last two decades; however, the disease remains invariably fatal. Androgens and the androgen receptor (AR) play a critical role in prostate carcinogenesis, and targeting the AR signaling axis with abiraterone, enzalutamide, darolutamide, and apalutamide has improved outcomes for men with this lethal disease. Targeting the AR and elucidating mechanisms of resistance to these agents remain central to drug development efforts. This review provides an overview of the evolution and current approaches for targeting the AR in advanced prostate cancer. It describes the biology of AR signaling, explores AR-targeting resistance mechanisms, and discusses future perspectives and promising novel therapeutic strategies.


Asunto(s)
Receptores Androgénicos , Antagonistas de Receptores Androgénicos/farmacología , Antagonistas de Receptores Androgénicos/uso terapéutico , Humanos , Masculino , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Receptores Androgénicos/metabolismo , Transducción de Señal/efectos de los fármacos
8.
Cancer Res ; 81(24): 6207-6218, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34753775

RESUMEN

It has been recognized for decades that ERBB signaling is important in prostate cancer, but targeting ERBB receptors as a therapeutic strategy for prostate cancer has been ineffective clinically. However, we show here that membranous HER3 protein is commonly highly expressed in lethal prostate cancer, associating with reduced time to castration resistance (CR) and survival. Multiplex immunofluorescence indicated that the HER3 ligand NRG1 is detectable primarily in tumor-infiltrating myelomonocytic cells in human prostate cancer; this observation was confirmed using single-cell RNA sequencing of human prostate cancer biopsies and murine transgenic prostate cancer models. In castration-resistant prostate cancer (CRPC) patient-derived xenograft organoids with high HER3 expression as well as mouse prostate cancer organoids, recombinant NRG1 enhanced proliferation and survival. Supernatant from murine bone marrow-derived macrophages and myeloid-derived suppressor cells promoted murine prostate cancer organoid growth in vitro, which could be reversed by a neutralizing anti-NRG1 antibody and ERBB inhibition. Targeting HER3, especially with the HER3-directed antibody-drug conjugate U3-1402, exhibited antitumor activity against HER3-expressing prostate cancer. Overall, these data indicate that HER3 is commonly overexpressed in lethal prostate cancer and can be activated by NRG1 secreted by myelomonocytic cells in the tumor microenvironment, supporting HER3-targeted therapeutic strategies for treating HER3-expressing advanced CRPC. SIGNIFICANCE: HER3 is an actionable target in prostate cancer, especially with anti-HER3 immunoconjugates, and targeting HER3 warrants clinical evaluation in prospective trials.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Biomarcadores de Tumor/metabolismo , Camptotecina/análogos & derivados , Neurregulina-1/metabolismo , Organoides/patología , Neoplasias de la Próstata/patología , Receptor ErbB-3/antagonistas & inhibidores , Animales , Antineoplásicos Inmunológicos/farmacología , Apoptosis , Biomarcadores de Tumor/genética , Camptotecina/farmacología , Proliferación Celular , Estudios de Seguimiento , Humanos , Masculino , Ratones Endogámicos NOD , Ratones SCID , Neurregulina-1/genética , Organoides/efectos de los fármacos , Organoides/metabolismo , Pronóstico , Estudios Prospectivos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Receptor ErbB-3/genética , Receptor ErbB-3/metabolismo , Tasa de Supervivencia , Células Tumorales Cultivadas , Microambiente Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Cancer Discov ; 11(11): 2812-2827, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34045297

RESUMEN

PARP inhibitors are approved for treating advanced prostate cancers (APC) with various defective DNA repair genes; however, further studies to clinically qualify predictive biomarkers are warranted. Herein we analyzed TOPARP-B phase II clinical trial samples, evaluating whole-exome and low-pass whole-genome sequencing and IHC and IF assays evaluating ATM and RAD51 foci (testing homologous recombination repair function). BRCA1/2 germline and somatic pathogenic mutations associated with similar benefit from olaparib; greater benefit was observed with homozygous BRCA2 deletion. Biallelic, but not monoallelic, PALB2 deleterious alterations were associated with clinical benefit. In the ATM cohort, loss of ATM protein by IHC was associated with a better outcome. RAD51 foci loss identified tumors with biallelic BRCA and PALB2 alterations while most ATM- and CDK12-altered APCs had higher RAD51 foci levels. Overall, APCs with homozygous BRCA2 deletion are exceptional responders; PALB2 biallelic loss and loss of ATM IHC expression associated with clinical benefit. SIGNIFICANCE: Not all APCs with DNA repair defects derive similar benefit from PARP inhibition. Most benefit was seen among patients with BRCA2 homozygous deletions, biallelic loss of PALB2, and loss of ATM protein. Loss of RAD51 foci, evaluating homologous recombination repair function, was found primarily in tumors with biallelic BRCA1/2 and PALB2 alterations.This article is highlighted in the In This Issue feature, p. 2659.


Asunto(s)
Antineoplásicos , Neoplasias de la Próstata , Antineoplásicos/uso terapéutico , Biomarcadores , Reparación del ADN , Humanos , Masculino , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética
10.
Cancer Discov ; 11(9): 2334-2353, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33879449

RESUMEN

Loss of the retinoblastoma (RB) tumor suppressor protein is a critical step in reprogramming biological networks that drive cancer progression, although mechanistic insight has been largely limited to the impact of RB loss on cell-cycle regulation. Here, isogenic modeling of RB loss identified disease stage-specific rewiring of E2F1 function, providing the first-in-field mapping of the E2F1 cistrome and transcriptome after RB loss across disease progression. Biochemical and functional assessment using both in vitro and in vivo models identified an unexpected, prominent role for E2F1 in regulation of redox metabolism after RB loss, driving an increase in the synthesis of the antioxidant glutathione, specific to advanced disease. These E2F1-dependent events resulted in protection from reactive oxygen species in response to therapeutic intervention. On balance, these findings reveal novel pathways through which RB loss promotes cancer progression and highlight potentially new nodes of intervention for treating RB-deficient cancers. SIGNIFICANCE: This study identifies stage-specific consequences of RB loss across cancer progression that have a direct impact on tumor response to clinically utilized therapeutics. The study herein is the first to investigate the effect of RB loss on global metabolic regulation and link RB/E2F1 to redox control in multiple advanced diseases.This article is highlighted in the In This Issue feature, p. 2113.


Asunto(s)
Factor de Transcripción E2F1/genética , Neoplasias de la Retina/genética , Proteína de Retinoblastoma/genética , Retinoblastoma/genética , Animales , Línea Celular Tumoral , Humanos , Ratones , Metástasis de la Neoplasia , Neoplasias de la Retina/patología , Retinoblastoma/secundario , Transducción de Señal , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Cancer Res ; 81(4): 1087-1100, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33822745

RESUMEN

Endocrine resistance (EnR) in advanced prostate cancer is fatal. EnR can be mediated by androgen receptor (AR) splice variants, with AR splice variant 7 (AR-V7) arguably the most clinically important variant. In this study, we determined proteins key to generating AR-V7, validated our findings using clinical samples, and studied splicing regulatory mechanisms in prostate cancer models. Triangulation studies identified JMJD6 as a key regulator of AR-V7, as evidenced by its upregulation with in vitro EnR, its downregulation alongside AR-V7 by bromodomain inhibition, and its identification as a top hit of a targeted siRNA screen of spliceosome-related genes. JMJD6 protein levels increased (P < 0.001) with castration resistance and were associated with higher AR-V7 levels and shorter survival (P = 0.048). JMJD6 knockdown reduced prostate cancer cell growth, AR-V7 levels, and recruitment of U2AF65 to AR pre-mRNA. Mutagenesis studies suggested that JMJD6 activity is key to the generation of AR-V7, with the catalytic machinery residing within a druggable pocket. Taken together, these data highlight the relationship between JMJD6 and AR-V7 in advanced prostate cancer and support further evaluation of JMJD6 as a therapeutic target in this disease. SIGNIFICANCE: This study identifies JMJD6 as being critical for the generation of AR-V7 in prostate cancer, where it may serve as a tractable target for therapeutic intervention.


Asunto(s)
Histona Demetilasas con Dominio de Jumonji/fisiología , Neoplasias de la Próstata Resistentes a la Castración/genética , Receptores Androgénicos/genética , Empalme Alternativo , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Estudios de Cohortes , Inhibidores Enzimáticos/uso terapéutico , Regulación Neoplásica de la Expresión Génica , Humanos , Histona Demetilasas con Dominio de Jumonji/antagonistas & inhibidores , Histona Demetilasas con Dominio de Jumonji/genética , Masculino , Terapia Molecular Dirigida , Oxigenasas/genética , Oxigenasas/fisiología , Pronóstico , Neoplasias de la Próstata Resistentes a la Castración/diagnóstico , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/mortalidad , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores Androgénicos/química , Receptores Androgénicos/metabolismo , Estudios Retrospectivos
12.
Eur Urol Focus ; 7(2): 231-233, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33495132

RESUMEN

Prostate-specific membrane antigen-based theranostics are likely to become important tools for the management of prostate cancer. However, data proving their clinical utility are urgently required before implementation of their use outside clinical trials, and their off-trial use needs to be better regulated.


Asunto(s)
Próstata , Neoplasias de la Próstata , Humanos , Masculino , Medicina de Precisión , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/terapia
13.
Clin Cancer Res ; 27(2): 566-574, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-32988971

RESUMEN

PURPOSE: Cyclin-dependent kinase 12 (CDK12) aberrations have been reported as a biomarker of response to immunotherapy for metastatic castration-resistant prostate cancer (mCRPC). Herein, we characterize CDK12-mutated mCRPC, presenting clinical, genomic, and tumor-infiltrating lymphocyte (TIL) data. EXPERIMENTAL DESIGN: Patients with mCRPC consented to the molecular analyses of diagnostic and mCRPC biopsies. Genomic analyses involved targeted next-generation (MiSeq; Illumina) and exome sequencing (NovaSeq; Illumina). TILs were assessed by validated immunocytochemistry coupled with deep learning-based artificial intelligence analyses including multiplex immunofluorescence assays for CD4, CD8, and FOXP3 evaluating TIL subsets. The control group comprised a randomly selected mCRPC cohort with sequencing and clinical data available. RESULTS: Biopsies from 913 patients underwent targeted sequencing between February 2015 and October 2019. Forty-three patients (4.7%) had tumors with CDK12 alterations. CDK12-altered cancers had distinctive features, with some revealing high chromosomal break numbers in exome sequencing. Biallelic CDK12-aberrant mCRPCs had shorter overall survival from diagnosis than controls [5.1 years (95% confidence interval (CI), 4.0-7.9) vs. 6.4 years (95% CI, 5.7-7.8); hazard ratio (HR), 1.65 (95% CI, 1.07-2.53); P = 0.02]. Median intratumoral CD3+ cell density was higher in CDK12 cancers, although this was not statistically significant (203.7 vs. 86.7 cells/mm2; P = 0.07). This infiltrate primarily comprised of CD4+FOXP3- cells (50.5 vs. 6.2 cells/mm2; P < 0.0001), where high counts tended to be associated with worse survival from diagnosis (HR, 1.64; 95% CI, 0.95-2.84; P = 0.077) in the overall population. CONCLUSIONS: CDK12-altered mCRPCs have worse prognosis, with these tumors surprisingly being primarily enriched for CD4+FOXP3- cells that seem to associate with worse outcome and may be immunosuppressive.See related commentary by Lotan and Antonarakis, p. 380.


Asunto(s)
Inteligencia Artificial , Neoplasias de la Próstata , Quinasas Ciclina-Dependientes , Genómica , Humanos , Masculino , Pronóstico , Microambiente Tumoral
14.
Eur Urol ; 79(2): 200-211, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33176972

RESUMEN

BACKGROUND: Deleterious ATM alterations are found in metastatic prostate cancer (PC); PARP inhibition has antitumour activity against this subset, but only some ATM loss PCs respond. OBJECTIVE: To characterise ATM-deficient lethal PC and to study synthetic lethal therapeutic strategies for this subset. DESIGN, SETTING, AND PARTICIPANTS: We studied advanced PC biopsies using validated immunohistochemical (IHC) and next-generation sequencing (NGS) assays. In vitro cell line models modified using CRISPR-Cas9 to impair ATM function were generated and used in drug-sensitivity and functional assays, with validation in a patient-derived model. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: ATM expression by IHC was correlated with clinical outcome using Kaplan-Meier curves and log-rank test; sensitivity to different drug combinations was assessed in the preclinical models. RESULTS AND LIMITATIONS: Overall, we detected ATM IHC loss in 68/631 (11%) PC patients in at least one biopsy, with synchronous and metachronous intrapatient heterogeneity; 46/71 (65%) biopsies with ATM loss had ATM mutations or deletions by NGS. ATM IHC loss was not associated with worse outcome from advanced disease, but ATM loss was associated with increased genomic instability (NtAI:number of subchromosomal regions with allelic imbalance extending to the telomere, p = 0.005; large-scale transitions, p = 0.05). In vitro, ATM loss PC models were sensitive to ATR inhibition, but had variable sensitivity to PARP inhibition; superior antitumour activity was seen with combined PARP and ATR inhibition in these models. CONCLUSIONS: ATM loss in PC is not always detected by targeted NGS, associates with genomic instability, and is most sensitive to combined ATR and PARP inhibition. PATIENT SUMMARY: Of aggressive prostate cancers, 10% lose the DNA repair gene ATM; this loss may identify a distinct prostate cancer subtype that is most sensitive to the combination of oral drugs targeting PARP and ATR.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Proteínas de la Ataxia Telangiectasia Mutada/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Humanos , Masculino , Estadificación de Neoplasias , Neoplasias de la Próstata/patología , Estudios Retrospectivos , Células Tumorales Cultivadas
15.
Cancer Cell ; 38(1): 25-27, 2020 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-32663466

RESUMEN

Prostate cancer (PC) care is rapidly evolving, with improved treatment options and outcomes. Trials recently published in the New England Journal of Medicine report on an oral lutenizing-hormone-releasing hormone antagonist with superior endocrine and tolerability profiles and positive outcomes for non-metastatic PC with androgen receptor antagonists, respectively.


Asunto(s)
Antagonistas de Andrógenos , Neoplasias de la Próstata , Andrógenos , Humanos , Masculino , Compuestos de Fenilurea , Neoplasias de la Próstata/tratamiento farmacológico , Pirimidinonas
17.
J Clin Invest ; 130(8): 3987-4005, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32343676

RESUMEN

Transcriptional dysregulation is a hallmark of prostate cancer (PCa). We mapped the RNA polymerase II-associated (RNA Pol II-associated) chromatin interactions in normal prostate cells and PCa cells. We discovered thousands of enhancer-promoter, enhancer-enhancer, as well as promoter-promoter chromatin interactions. These transcriptional hubs operate within the framework set by structural proteins - CTCF and cohesins - and are regulated by the cooperative action of master transcription factors, such as the androgen receptor (AR) and FOXA1. By combining analyses from metastatic castration-resistant PCa (mCRPC) specimens, we show that AR locus amplification contributes to the transcriptional upregulation of the AR gene by increasing the total number of chromatin interaction modules comprising the AR gene and its distal enhancer. We deconvoluted the transcription control modules of several PCa genes, notably the biomarker KLK3, lineage-restricted genes (KRT8, KRT18, HOXB13, FOXA1, ZBTB16), the drug target EZH2, and the oncogene MYC. By integrating clinical PCa data, we defined a germline-somatic interplay between the PCa risk allele rs684232 and the somatically acquired TMPRSS2-ERG gene fusion in the transcriptional regulation of multiple target genes - VPS53, FAM57A, and GEMIN4. Our studies implicate changes in genome organization as a critical determinant of aberrant transcriptional regulation in PCa.


Asunto(s)
Biomarcadores de Tumor , Cromatina , Regulación Neoplásica de la Expresión Génica , Proteínas de Neoplasias , Neoplasias de la Próstata , ARN Polimerasa II/metabolismo , Elementos de Respuesta , Biomarcadores de Tumor/biosíntesis , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Cromatina/patología , Humanos , Masculino , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , ARN Polimerasa II/genética
18.
Eur Urol ; 76(4): 469-478, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31345636

RESUMEN

BACKGROUND: Prostate-specific membrane antigen (PSMA; folate hydrolase) prostate cancer (PC) expression has theranostic utility. OBJECTIVE: To elucidate PC PSMA expression and associate this with defective DNA damage repair (DDR). DESIGN, SETTING, AND PARTICIPANTS: Membranous PSMA (mPSMA) expression was scored immunohistochemically from metastatic castration-resistant PC (mCRPC) and matching, same-patient, diagnostic biopsies, and correlated with next-generation sequencing (NGS) and clinical outcome data. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Expression of mPSMA was quantitated by modified H-score. Patient DNA was tested by NGS. Gene expression and activity scores were determined from mCRPC transcriptomes. Statistical correlations utilised Wilcoxon signed rank tests, survival was estimated by Kaplan-Meier test, and sample heterogeneity was quantified by Shannon's diversity index. RESULTS AND LIMITATIONS: Expression of mPSMA at diagnosis was associated with higher Gleason grade (p=0.04) and worse overall survival (p=0.006). Overall, mPSMA expression levels increased at mCRPC (median H-score [interquartile range]: castration-sensitive prostate cancer [CSPC] 17.5 [0.0-60.0] vs mCRPC 55.0 [2.8-117.5]). Surprisingly, 42% (n=16) of CSPC and 27% (n=16) of mCRPC tissues sampled had no detectable mPSMA (H-score <10). Marked intratumour heterogeneity of mPSMA expression, with foci containing no detectable PSMA, was observed in all mPSMA expressing CSPC (100%) and 37 (84%) mCRPC biopsies. Heterogeneous intrapatient mPSMA expression between metastases was also observed, with the lowest expression in liver metastases. Tumours with DDR had higher mPSMA expression (p=0.016; 87.5 [25.0-247.5] vs 20 [0.3-98.8]; difference in medians 60 [5.0-95.0]); validation cohort studies confirmed higher mPSMA expression in patients with deleterious aberrations in BRCA2 (p<0.001; median H-score: 300 [165-300]; difference in medians 195.0 [100.0-270.0]) and ATM (p=0.005; 212.5 [136.3-300]; difference in medians 140.0 [55.0-200]) than in molecularly unselected mCRPC biopsies (55.0 [2.75-117.5]). Validation studies using mCRPC transcriptomes corroborated these findings, also indicating that SOX2 high tumours have low PSMA expression. CONCLUSIONS: Membranous PSMA expression is upregulated in some but not all PCs, with mPSMA expression demonstrating marked inter- and intrapatient heterogeneity. DDR aberrations are associated with higher mPSMA expression and merit further evaluation as predictive biomarkers of response for PSMA-targeted therapies in larger, prospective cohorts. PATIENT SUMMARY: Through analysis of prostate cancer samples, we report that the presence of prostate-specific membrane antigen (PSMA) is extremely variable both within one patient and between different patients. This may limit the usefulness of PSMA scans and PSMA-targeted therapies. We show for the first time that prostate cancers with defective DNA repair produce more PSMA and so may respond better to PSMA-targeting treatments.


Asunto(s)
Antígenos de Superficie/biosíntesis , Reparación del ADN , Glutamato Carboxipeptidasa II/biosíntesis , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Antígenos de Superficie/análisis , Glutamato Carboxipeptidasa II/análisis , Humanos , Masculino , Neoplasias de la Próstata Resistentes a la Castración/química , Estudios Retrospectivos
20.
Eur Urol ; 76(5): 676-685, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31036442

RESUMEN

BACKGROUND: Detection of androgen receptor splice variant-7 (AR-V7) mRNA in circulating tumour cells (CTCs) is associated with worse outcome in metastatic castration-resistant prostate cancer (mCRPC). However, studies rarely report comparisons with CTC counts and biopsy AR-V7 protein expression. OBJECTIVE: To determine the reproducibility of AdnaTest CTC AR-V7 testing, and associations with clinical characteristics, CellSearch CTC counts, tumour biopsy AR-V7 protein expression and overall survival (OS). DESIGN, SETTING, AND PARTICIPANTS: CTC AR-V7 status was determined for 227 peripheral blood samples, from 181 mCRPC patients with CTC counts (202 samples; 136 patients) and matched mCRPC biopsies (65 samples; 58 patients). OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: CTC AR-V7 status was associated with clinical characteristics, CTC counts, and tissue biopsy AR-V7 protein expression. The association of CTC AR-V7 status and other baseline variables with OS was determined. RESULTS AND LIMITATIONS: Of the samples, 35% were CTC+/AR-V7+. CTC+/AR-V7+ samples had higher CellSearch CTC counts (median CTC; interquartile range [IQR]: 60, 19-184 vs 9, 2-64; Mann-Whitney test p<0.001) and biopsy AR-V7 protein expression (median H-score, IQR: 100, 63-148 vs 15, 0-113; Mann-Whitney test p=0.004) than CTC+/AR-V7- samples. However, both CTC- (63%) and CTC+/AR-V7- (62%) patients had detectable AR-V7 protein in contemporaneous biopsies. After accounting for baseline characteristics, there was shorter OS in CTC+/AR-V7+ patients than in CTC- patients (hazard ratio [HR] 2.13; 95% confidence interval [CI] 1.23-3.71; p=0.02); surprisingly, there was no evidence that CTC+/AR-V7+ patients had worse OS than CTC+/AR-V7- patients (HR 1.26; 95% CI 0.73-2.17; p=0.4). A limitation of this study was the heterogeneity of treatment received. CONCLUSIONS: Studies reporting the prognostic relevance of CTC AR-V7 status must account for CTC counts. Discordant CTC AR-V7 results and AR-V7 protein expression in matched, same-patient biopsies are reported. PATIENT SUMMARY: Liquid biopsies that determine circulating tumour cell androgen receptor splice variant-7 status have the potential to impact treatment decisions in metastatic castration-resistant prostate cancer patients. Robust clinical qualification of these assays is required before their routine use.


Asunto(s)
Células Neoplásicas Circulantes , Neoplasias de la Próstata Resistentes a la Castración , Receptores Androgénicos/genética , Empalme Alternativo , Biopsia/métodos , Recuento de Células/métodos , Resistencia a Antineoplásicos , Técnicas Genéticas , Humanos , Masculino , Persona de Mediana Edad , Metástasis de la Neoplasia/diagnóstico , Metástasis de la Neoplasia/genética , Estadificación de Neoplasias , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patología , Pronóstico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Isoformas de Proteínas/genética , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...