Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 13(6): e0198697, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29870546

RESUMEN

Despite their demonstrated biocompatibility and osteogenic properties, oyster shells have been reported as a potential alternative to other commonly used materials for bone substitution. This study evaluated whether an experimental bone substitute (EBS) made from a typical oyster shell of Northeastern Brazil (Crassostrea rhizophora) has effects on bone development using an animal model. Oysters were collected from a biologically assisted vivarium, and their inner layer was used for preparing an EBS. Chemical and surface characterization of EBS was performed using Individually Coupled Plasma Optical Emission Spectrometry (ICP-OES) and Scanning Electron Microscope (SEM), respectively. Seventy-two rats were randomly assigned to groups according to the treatment of bone defects created in the submandibular area: Negative Control (-C), Positive Control (+C; Bio-Oss®) and EBS. Euthanasia occurred at 7, 21, 42 and 56 days postoperatively. The bone pieces were stained with hematoxylin and eosin (H&E). The formation of bone tissue was evaluated histologically and histomorphometrically. Data were analyzed through the Kruskal-Wallis test and ANOVA considering a significant level of 5%. The main element found in EBS was calcium (71.68%), and it presented heterogeneity in the particle size and a porosity aspect at SEM analysis. Histological results revealed the absence of inflammatory cells in all groups, being that EBS presented the most accelerated process of bone formation with a statistically significant difference between this group and the +C and -C groups in the 21-day time-point (p < 0.05). After 21 days, the bone formation process was similar between all groups (p > 0.05), showing an immature lamellar bone pattern after 56 days of experimentation (p > 0.05). Within the limitations of this study, it was possible to conclude that EBS presented good biocompatibility and promoted fast stimulation for bone-forming cells in an animal model.


Asunto(s)
Exoesqueleto/química , Sustitutos de Huesos , Huesos/fisiología , Crassostrea , Osteogénesis , Animales , Huesos/lesiones , Masculino , Ensayo de Materiales , Modelos Animales , Distribución Aleatoria , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA