Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Nucleic Acids Res ; 52(4): 1753-1762, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38117984

RESUMEN

Members of the conserved Pif1 family of 5'-3' DNA helicases can unwind G4s and mitigate their negative impact on genome stability. In Saccharomyces cerevisiae, two Pif1 family members, Pif1 and Rrm3, contribute to the suppression of genomic instability at diverse regions including telomeres, centromeres and tRNA genes. While Pif1 can resolve lagging strand G4s in vivo, little is known regarding Rrm3 function at G4s and its cooperation with Pif1 for G4 replication. Here, we monitored replication through G4 sequences in real time to show that Rrm3 is essential for efficient replisome progression through G4s located on the leading strand template, but not on the lagging strand. We found that Rrm3 importance for replication through G4s is dependent on its catalytic activity and its N-terminal unstructured region. Overall, we show that Rrm3 and Pif1 exhibit a division of labor that enables robust replication fork progression through leading and lagging strand G4s, respectively.


Asunto(s)
G-Cuádruplex , Proteínas de Saccharomyces cerevisiae , ADN Helicasas/genética , ADN Helicasas/metabolismo , Replicación del ADN/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Front Oncol ; 13: 1271847, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38125947

RESUMEN

Multiple myeloma (MM) is a hematological malignancy characterized by an abnormal clonal proliferation of malignant plasma cells. Despite the introduction of novel agents that have significantly improved clinical outcome, most patients relapse and develop drug resistance. MM is characterized by genomic instability and a high level of replicative stress. In response to replicative and DNA damage stress, MM cells activate various DNA damage signaling pathways. In this study, we reported that high CHK1 and WEE1 expression is associated with poor outcome in independent cohorts of MM patients treated with high dose melphalan chemotherapy or anti-CD38 immunotherapy. Combined targeting of Chk1 and Wee1 demonstrates synergistic toxicities on MM cells and was associated with higher DNA double-strand break induction, as evidenced by an increased percentage of γH2AX positive cells subsequently leading to apoptosis. The therapeutic interest of Chk1/Wee1 inhibitors' combination was validated on primary MM cells of patients. The toxicity was specific of MM cells since normal bone marrow cells were not significantly affected. Using deconvolution approach, MM patients with high CHK1 expression exhibited a significant lower percentage of NK cells whereas patients with high WEE1 expression displayed a significant higher percentage of regulatory T cells in the bone marrow. These data emphasize that MM cell adaptation to replicative stress through Wee1 and Chk1 upregulation may decrease the activation of the cell-intrinsic innate immune response. Our study suggests that association of Chk1 and Wee1 inhibitors may represent a promising therapeutic approach in high-risk MM patients characterized by high CHK1 and WEE1 expression.

3.
C R Biol ; 346: 95-105, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37779381

RESUMEN

Replication stress is an alteration in the progression of replication forks caused by a variety of events of endogenous or exogenous origin. In precancerous lesions, this stress is exacerbated by the deregulation of oncogenic pathways, which notably disrupts the coordination between replication and transcription, and leads to genetic instability and cancer development. It is now well established that transcription can interfere with genome replication in different ways, such as head-on collisions between polymerases, accumulation of positive DNA supercoils or formation of R-loops. These structures form during transcription when nascent RNA reanneals with DNA behind the RNA polymerase, forming a stable DNA:RNA hybrid. In this review, we discuss how these different cotranscriptional processes disrupt the progression of replication forks and how they contribute to genetic instability in cancer cells.


Le stress réplicatif correspond à une altération de la progression des fourches de réplication causé par une variété d'événements d'origine endogène ou exogène. Dans les lésions précancéreuses, ce stress est aggravé par la dérégulation de voies oncogéniques, qui perturbe notamment la coordination entre la réplication et la transcription du génome et entraine une instabilité génétique contribuant au développement du cancer. Il est maintenant bien établi que la transcription peut interférer avec la réplication du génome de différentes façons, telles que des collisions frontales entre polymérases, l'accumulation de supertours positifs de l'ADN ou la formation de R-loops. Ces structures se forment au cours de la transcription lorsque l'ARN naissant se réassocie avec l'ADN derrière l'ARN polymérase, formant un hybride ADN :ARN stable. Dans cette revue, nous discutons comment ces différents processus cotranscriptionnels perturbent la progression des fourches de réplication et comment ils contribuent à l'instabilité génétique des cellules cancéreuses.


Asunto(s)
Neoplasias , Transcripción Genética , Estructuras R-Loop , Replicación del ADN/genética , ADN , Oncogenes/genética , ARN , Neoplasias/genética
4.
EMBO J ; 42(23): e113104, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37855233

RESUMEN

R-loops represent a major source of replication stress, but the mechanism by which these structures impede fork progression remains unclear. To address this question, we monitored fork progression, arrest, and restart in Saccharomyces cerevisiae cells lacking RNase H1 and H2, two enzymes responsible for degrading RNA:DNA hybrids. We found that while RNase H-deficient cells could replicate their chromosomes normally under unchallenged growth conditions, their replication was impaired when exposed to hydroxyurea (HU) or methyl methanesulfonate (MMS). Treated cells exhibited increased levels of RNA:DNA hybrids at stalled forks and were unable to generate RPA-coated single-stranded (ssDNA), an important postreplicative intermediate in resuming replication. Similar impairments in nascent DNA resection and ssDNA formation at HU-arrested forks were observed in human cells lacking RNase H2. However, fork resection was fully restored by addition of triptolide, an inhibitor of transcription that induces RNA polymerase degradation. Taken together, these data indicate that RNA:DNA hybrids not only act as barriers to replication forks, but also interfere with postreplicative fork repair mechanisms if not promptly degraded by RNase H.


Asunto(s)
Replicación del ADN , ARN , Humanos , ARN/genética , Ribonucleasas/genética , ADN/metabolismo , Hidroxiurea/farmacología , Ribonucleasa H/genética , Ribonucleasa H/metabolismo
5.
EMBO J ; 42(15): e112684, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37303233

RESUMEN

Upon DNA damage, cells activate the DNA damage response (DDR) to coordinate proliferation and DNA repair. Dietary, metabolic, and environmental inputs are emerging as modulators of how DNA surveillance and repair take place. Lipids hold potential to convey these cues, although little is known about how. We observed that lipid droplet (LD) number specifically increased in response to DNA breaks. Using Saccharomyces cerevisiae and cultured human cells, we show that the selective storage of sterols into these LD concomitantly stabilizes phosphatidylinositol-4-phosphate (PI(4)P) at the Golgi, where it binds the DDR kinase ATM. In turn, this titration attenuates the initial nuclear ATM-driven response to DNA breaks, thus allowing processive repair. Furthermore, manipulating this loop impacts the kinetics of DNA damage signaling and repair in a predictable manner. Thus, our findings have major implications for tackling genetic instability pathologies through dietary and pharmacological interventions.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Proteínas de Saccharomyces cerevisiae , Humanos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Esteroles/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Daño del ADN , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo
6.
iScience ; 26(12): 108564, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38213791

RESUMEN

Although ethanol is a class I carcinogen and is linked to more than 700,000 cancer incidences, a clear understanding of the molecular mechanisms underlying ethanol-related carcinogenesis is still lacking. Further understanding of ethanol-related cell damage can contribute to reducing or treating alcohol-related cancers. Here, we investigated the effects of both short- and long-term exposure of human laryngeal epithelial cells to different ethanol concentrations. RNA sequencing shows that ethanol altered gene expression patterns in a time- and concentration-dependent way, affecting genes involved in ribosome biogenesis, cytoskeleton remodeling, Wnt signaling, and transmembrane ion transport. Additionally, ethanol induced a slower cell proliferation, a delayed cell cycle progression, and replication fork stalling. In addition, ethanol exposure resulted in morphological changes, which could be associated with membrane stress. Taken together, our data yields a comprehensive view of molecular changes associated with ethanol stress in epithelial cells of the upper aerodigestive tract.

7.
Front Immunol ; 13: 983181, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36569948

RESUMEN

Multiple myeloma (MM) is a hematologic cancer characterized by accumulation of malignant plasma cells in the bone marrow. To date, no definitive cure exists for MM and resistance to current treatments is one of the major challenges of this disease. The DNA helicase BLM, whose depletion or mutation causes the cancer-prone Bloom's syndrome (BS), is a central factor of DNA damage repair by homologous recombination (HR) and genomic stability maintenance. Using independent cohorts of MM patients, we identified that high expression of BLM is associated with a poor outcome with a significant enrichment in replication stress signature. We provide evidence that chemical inhibition of BLM by the small molecule ML216 in HMCLs (human myeloma cell lines) leads to cell cycle arrest and increases apoptosis, likely by accumulation of DNA damage. BLM inhibition synergizes with the alkylating agent melphalan to efficiently inhibit growth and promote cell death in HMCLs. Moreover, ML216 treatment re-sensitizes melphalan-resistant cell lines to this conventional therapeutic agent. Altogether, these data suggest that inhibition of BLM in combination with DNA damaging agents could be of therapeutic interest in the treatment of MM, especially in those patients with high BLM expression and/or resistance to melphalan.


Asunto(s)
Mieloma Múltiple , Humanos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , Melfalán/farmacología , Melfalán/uso terapéutico , Reparación del ADN , Resistencia a Medicamentos
8.
Mol Cell ; 82(16): 2952-2966.e6, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35839782

RESUMEN

Cellular homeostasis requires the coordination of several machineries concurrently engaged in the DNA. Wide-spread transcription can interfere with other processes, and transcription-replication conflicts (TRCs) threaten genome stability. The conserved Sen1 helicase not only terminates non-coding transcription but also interacts with the replisome and reportedly resolves genotoxic R-loops. Sen1 prevents genomic instability, but how this relates to its molecular functions remains unclear. We generated high-resolution, genome-wide maps of transcription-dependent conflicts and R-loops using a Sen1 mutant that has lost interaction with the replisome but is termination proficient. We show that, under physiological conditions, Sen1 removes RNA polymerase II at TRCs within genes and the rDNA and at sites of transcription-transcription conflicts, thus qualifying as a "key regulator of conflicts." We demonstrate that genomic stability is affected by Sen1 mutation only when in addition to its role at the replisome, the termination of non-coding transcription or R-loop removal are additionally compromised.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , ADN Helicasas/genética , ADN Helicasas/metabolismo , Replicación del ADN/genética , Inestabilidad Genómica , ARN Helicasas/genética , ARN Helicasas/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcripción Genética
9.
J Allergy Clin Immunol ; 150(3): 594-603.e2, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35841981

RESUMEN

BACKGROUND: Lymphopenia is predictive of survival in patients with coronavirus disease 2019 (COVID-19). OBJECTIVE: The aim of this study was to understand the cause of the lymphocyte count drop in severe forms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. METHODS: Monocytic production of reactive oxygen species (ROSs) and T-cell apoptosis were measured by flow cytometry, DNA damage in PBMCs was measured by immunofluorescence, and angiotensin II (AngII) was measured by ELISA in patients infected with SARS-CoV-2 at admission to an intensive care unit (ICU) (n = 29) or not admitted to an ICU (n = 29) and in age- and sex-matched healthy controls. RESULTS: We showed that the monocytes of certain patients with COVID-19 spontaneously released ROSs able to induce DNA damage and apoptosis in neighboring cells. Of note, high ROS production was predictive of death in ICU patients. Accordingly, in most patients, we observed the presence of DNA damage in up to 50% of their PBMCs and T-cell apoptosis. Moreover, the intensity of this DNA damage was linked to lymphopenia. SARS-CoV-2 is known to induce the internalization of its receptor, angiotensin-converting enzyme 2, which is a protease capable of catabolizing AngII. Accordingly, in certain patients with COVID-19 we observed high plasma levels of AngII. When looking for the stimulus responsible for their monocytic ROS production, we revealed that AngII triggers ROS production by monocytes via angiotensin receptor I. ROSs released by AngII-activated monocytes induced DNA damage and apoptosis in neighboring lymphocytes. CONCLUSION: We conclude that T-cell apoptosis provoked via DNA damage due to the release of monocytic ROSs could play a major role in COVID-19 pathogenesis.


Asunto(s)
Angiotensina II , COVID-19 , Linfopenia , Angiotensina II/sangre , Apoptosis , COVID-19/diagnóstico , COVID-19/patología , Daño del ADN , Humanos , Especies Reactivas de Oxígeno , SARS-CoV-2 , Linfocitos T
10.
Int J Mol Sci ; 23(10)2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35628514

RESUMEN

The current methods for measuring the DNA damage response (DDR) are relatively labor-intensive and usually based on Western blotting, flow cytometry, and/or confocal immunofluorescence analyses. They require many cells and are often limited to the assessment of a single or few proteins. Here, we used the Celigo® image cytometer to evaluate the cell response to DNA-damaging agents based on a panel of biomarkers associated with the main DDR signaling pathways. We investigated the cytostatic or/and the cytotoxic effects of these drugs using simultaneous propidium iodide and calcein-AM staining. We also describe new dedicated multiplexed protocols to investigate the qualitative (phosphorylation) or the quantitative changes of eleven DDR markers (H2AX, DNA-PKcs, ATR, ATM, CHK1, CHK2, 53BP1, NBS1, RAD51, P53, P21). The results of our study clearly show the advantage of using this methodology because the multiplexed-based evaluation of these markers can be performed in a single experiment using the standard 384-well plate format. The analyses of multiple DDR markers together with the cell cycle status provide valuable insights into the mechanism of action of investigational drugs that induce DNA damage in a time- and cost-effective manner due to the low amounts of antibodies and reagents required.


Asunto(s)
Antineoplásicos , Daño del ADN , Antineoplásicos/farmacología , Ciclo Celular , ADN , Fosforilación
11.
Cancer Res ; 82(6): 998-1012, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35078814

RESUMEN

Diffuse large B-cell lymphoma (DLBCL) is the most common hematological malignancy. Although more than half of patients with DLBCL achieve long-term remission, the majority of remaining patients succumb to the disease. As abnormal iron homeostasis is implicated in carcinogenesis and the progression of many tumors, we searched for alterations in iron metabolism in DLBCL that could be exploited to develop novel therapeutic strategies. Analysis of the iron metabolism gene expression profile of large cohorts of patients with DLBCL established the iron score (IS), a gene expression-based risk score enabling identification of patients with DLBCL with a poor outcome who might benefit from a suitable targeted therapy. In a panel of 16 DLBCL cell lines, ironomycin, a promising lysosomal iron-targeting small molecule, inhibited DLBCL cell proliferation at nanomolar concentrations compared with typical iron chelators. Ironomycin also induced significant cell growth inhibition, ferroptosis, and autophagy. Ironomycin treatment resulted in accumulation of DNA double-strand breaks, delayed progression of replication forks, and increased RPA2 phosphorylation, a marker of replication stress. Ironomycin significantly reduced the median number of viable primary DLBCL cells of patients without major toxicity for nontumor cells from the microenvironment and presented low toxicity in hematopoietic progenitors compared with conventional treatments. Significant synergistic effects were also observed by combining ironomycin with doxorubicin, BH3 mimetics, BTK inhibitors, or Syk inhibitors. Altogether, these data demonstrate that a subgroup of high-risk patients with DLBCL can be identified with the IS that can potentially benefit from targeting iron homeostasis. SIGNIFICANCE: Iron homeostasis represents a potential therapeutic target for high-risk patients with DLBCL that can be targeted with ironomycin to induce cell death and to sensitize tumor cells to conventional treatments.


Asunto(s)
Apoptosis , Linfoma de Células B Grandes Difuso , Línea Celular Tumoral , Proliferación Celular , Homeostasis , Humanos , Hierro/farmacología , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/patología , Microambiente Tumoral
12.
MicroPubl Biol ; 20222022.
Artículo en Inglés | MEDLINE | ID: mdl-35071999

RESUMEN

Camptothecin (CPT) is a specific inhibitor of the DNA topoisomerase I (Top1p), currently used in cancer therapy, which induces DNA damage and cell death. Top1p is highly active at the repeated ribosomal DNA locus (rDNA) to relax DNA supercoiling caused by elevated transcription and replication occurring in opposite directions. Fob1p interacts with, and stabilizes, Top1p at the rDNA Replication Fork Barrier (rRFB), where replication and transcription converge. Here, we have investigated if the absence of Fob1p and the consequent loss of Top1p specific targeting to the rRFB impact the sensitivity and the cell cycle progression of wild-type cells to CPT. We have also investigated the consequences of the absence of Fob1p in rad52∆ mutants, which are affected in the repair of CPT-induced DNA damage by homologous recombination. The results show that CPT sensitivity and the global cell cycle progression in cells exposed to CPT is not changed in the absence of Fob1p. Moreover, we have observed in fob1∆ cells treated with CPT that the homologous recombination factor Rad52p still congregates in the shape of foci in the nucleolus, which hosts the rDNA. This suggests that, in the absence of Fob1p, Top1p is still recruited to the rDNA, presumably at sequences other than the rRFB, and its inhibition by CPT leads to recombination events.

13.
Nucleic Acids Res ; 49(17): 9906-9925, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34500463

RESUMEN

Replication-associated single-ended DNA double-strand breaks (seDSBs) are repaired predominantly through RAD51-mediated homologous recombination (HR). Removal of the non-homologous end-joining (NHEJ) factor Ku from resected seDSB ends is crucial for HR. The coordinated actions of MRE11-CtIP nuclease activities orchestrated by ATM define one pathway for Ku eviction. Here, we identify the pre-mRNA splicing protein XAB2 as a factor required for resistance to seDSBs induced by the chemotherapeutic alkylator temozolomide. Moreover, we show that XAB2 prevents Ku retention and abortive HR at seDSBs induced by temozolomide and camptothecin, via a pathway that operates in parallel to the ATM-CtIP-MRE11 axis. Although XAB2 depletion preserved RAD51 focus formation, the resulting RAD51-ssDNA associations were unproductive, leading to increased NHEJ engagement in S/G2 and genetic instability. Overexpression of RAD51 or RAD52 rescued the XAB2 defects and XAB2 loss was synthetically lethal with RAD52 inhibition, providing potential perspectives in cancer therapy.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades/genética , Autoantígeno Ku/metabolismo , Factores de Empalme de ARN/metabolismo , Alquilantes/efectos adversos , Alquilantes/farmacología , Camptotecina/efectos adversos , Camptotecina/farmacología , Línea Celular Tumoral , Endodesoxirribonucleasas/metabolismo , Glioblastoma/tratamiento farmacológico , Recombinación Homóloga/genética , Humanos , Proteína Homóloga de MRE11/metabolismo , Interferencia de ARN , Factores de Empalme de ARN/genética , ARN Interferente Pequeño/genética , Recombinasa Rad51/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Temozolomida/efectos adversos , Temozolomida/farmacología
14.
Nat Rev Cancer ; 21(11): 701-717, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34376827

RESUMEN

Immunotherapy has revolutionized cancer treatment and substantially improved patient outcome with regard to multiple tumour types. However, most patients still do not benefit from such therapies, notably because of the absence of pre-existing T cell infiltration. DNA damage response (DDR) deficiency has recently emerged as an important determinant of tumour immunogenicity. A growing body of evidence now supports the concept that DDR-targeted therapies can increase the antitumour immune response by (1) promoting antigenicity through increased mutability and genomic instability, (2) enhancing adjuvanticity through the activation of cytosolic immunity and immunogenic cell death and (3) favouring reactogenicity through the modulation of factors that control the tumour-immune cell synapse. In this Review, we discuss the interplay between the DDR and anticancer immunity and highlight how this dynamic interaction contributes to shaping tumour immunogenicity. We also review the most innovative preclinical approaches that could be used to investigate such effects, including recently developed ex vivo systems. Finally, we highlight the therapeutic opportunities presented by the exploitation of the DDR-anticancer immunity interplay, with a focus on those in early-phase clinical development.


Asunto(s)
Daño del ADN , Inmunoterapia , Oncología Médica , Neoplasias/genética , Neoplasias/terapia , Animales , Inestabilidad Genómica , Humanos , Neoplasias/inmunología , Neoplasias/patología
15.
Cancers (Basel) ; 13(15)2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34359660

RESUMEN

Plasma cells (PCs) have an essential role in humoral immune response by secretion of antibodies, and represent the final stage of B lymphocytes differentiation. During this differentiation, the pre-plasmablastic stage is characterized by highly proliferative cells that start to secrete immunoglobulins (Igs). Thus, replication and transcription must be tightly regulated in these cells to avoid transcription/replication conflicts (TRCs), which could increase replication stress and lead to genomic instability. In this review, we analyzed expression of genes involved in TRCs resolution during B to PC differentiation and identified 41 genes significantly overexpressed in the pre-plasmablastic stage. This illustrates the importance of mechanisms required for adequate processing of TRCs during PCs differentiation. Furthermore, we identified that several of these factors were also found overexpressed in purified PCs from patients with multiple myeloma (MM) compared to normal PCs. Malignant PCs produce high levels of Igs concomitantly with cell cycle deregulation. Therefore, increasing the TRCs occurring in MM cells could represent a potent therapeutic strategy for MM patients. Here, we describe the potential roles of TRCs resolution factors in myelomagenesis and discuss the therapeutic interest of targeting the TRCs resolution machinery in MM.

16.
Curr Opin Genet Dev ; 71: 136-142, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34455237

RESUMEN

Replication stress (RS) is a hallmark of cancer cells that is associated with increased genomic instability. RS occurs when replication forks encounter obstacles along the DNA. Stalled forks are signaled by checkpoint kinases that prevent fork collapse and coordinate fork repair pathways. Fork restart also depends on chromatin remodelers to increase the accessibility of nascent chromatin to recombination and repair factors. In this review, we discuss recent findings on the causes and consequences of RS, with a focus on endogenous replication impediments and their impact on fork velocity. We also discuss recent studies on the interplay between stalled forks and innate immunity, which extends the RS response beyond cell boundaries and opens new avenues for cancer therapy.


Asunto(s)
Cromatina , Replicación del ADN , Cromatina/genética , ADN/metabolismo , Replicación del ADN/genética , Proteínas de Unión al ADN/genética , Inestabilidad Genómica/genética , Humanos
17.
DNA Repair (Amst) ; 107: 103199, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34399314

RESUMEN

Transcription-replication conflicts (TRCs) represent a potential source of endogenous replication stress (RS) and genomic instability in eukaryotic cells but the mechanisms that underlie this instability remain poorly understood. Part of the problem could come from non-B DNA structures called R-loops, which are formed of a RNA:DNA hybrid and a displaced ssDNA loop. In this review, we discuss different scenarios in which R-loops directly or indirectly interfere with DNA replication. We also present other types of TRCs that may not depend on R-loops to impede fork progression. Finally, we discuss alternative models in which toxic RNA:DNA hybrids form at stalled forks as a consequence - but not a cause - of replication stress and interfere with replication resumption.


Asunto(s)
Inestabilidad Genómica
18.
Front Cell Dev Biol ; 9: 702584, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34249949

RESUMEN

The genome of eukaryotic cells is particularly at risk during the S phase of the cell cycle, when megabases of chromosomal DNA are unwound to generate two identical copies of the genome. This daunting task is executed by thousands of micro-machines called replisomes, acting at fragile structures called replication forks. The correct execution of this replication program depends on the coordinated action of hundreds of different enzymes, from the licensing of replication origins to the termination of DNA replication. This review focuses on the mechanisms that ensure the completion of DNA replication under challenging conditions of endogenous or exogenous origin. It also covers new findings connecting the processing of stalled forks to the release of small DNA fragments into the cytoplasm, activating the cGAS-STING pathway. DNA damage and fork repair comes therefore at a price, which is the activation of an inflammatory response that has both positive and negative impacts on the fate of stressed cells. These new findings have broad implications for the etiology of interferonopathies and for cancer treatment.

19.
STAR Protoc ; 2(2): 100525, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34027483

RESUMEN

This protocol describes how to culture, image, and determine the nuclear position of a fluorescently tagged DNA locus in the 3D nucleoplasm of fixed Saccharomyces cerevisiae cells. Here, we propose a manual scoring method based on widefield images and an automated method based on 3D-SIM images. Yeast culture conditions have to be followed meticulously to get the best biological response in a given environment. For complete details on the use and execution of this protocol, please refer to Forey et al. (2020).


Asunto(s)
Núcleo Celular/química , ADN , Imagenología Tridimensional/métodos , Microscopía Fluorescente/métodos , Saccharomyces cerevisiae , ADN/análisis , ADN/química , ADN/metabolismo , Colorantes Fluorescentes/análisis , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Sondas Moleculares/análisis , Sondas Moleculares/química , Sondas Moleculares/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/citología
20.
Leukemia ; 35(5): 1451-1462, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33824465

RESUMEN

Plasma cells (PCs) play an important role in the adaptive immune system through a continuous production of antibodies. We have demonstrated that PC differentiation can be modeled in vitro using complex multistep culture systems reproducing sequential differentiation process occurring in vivo. Here we present a comprehensive, temporal program of gene expression data encompassing human PC differentiation (PCD) using RNA sequencing (RNA-seq). Our results reveal 6374 differentially expressed genes classified into four temporal gene expression patterns. A stringent pathway enrichment analysis of these gene clusters highlights known pathways but also pathways largely unknown in PCD, including the heme biosynthesis and the glutathione conjugation pathways. Additionally, our analysis revealed numerous novel transcriptional networks with significant stage-specific overexpression and potential importance in PCD, including BATF2, BHLHA15/MIST1, EZH2, WHSC1/MMSET, and BLM. We have experimentally validated a potent role for BLM in regulating cell survival and proliferation during human PCD. Taken together, this RNA-seq analysis of PCD temporal stages helped identify coexpressed gene modules with associated up/downregulated transcription regulator genes that could represent major regulatory nodes for human PC maturation. These data constitute a unique resource of human PCD gene expression programs in support of future studies for understanding the underlying mechanisms that control PCD.


Asunto(s)
Diferenciación Celular/genética , Células Plasmáticas/fisiología , ARN/genética , Factores de Transcripción/genética , Transcripción Genética/genética , Línea Celular Tumoral , Proliferación Celular/genética , Regulación hacia Abajo/genética , Regulación de la Expresión Génica/genética , Glutatión/genética , Hemo/genética , Humanos , Análisis de Secuencia de ARN/métodos , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...