Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Physiol Genomics ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38738316

RESUMEN

Military training provides insight into metabolic responses under unique physiological demands that can be comprehensively characterized by global metabolomic profiling to identify potential strategies for improving performance. This study identified shared changes in metabolomic profiles across three distinct military training exercises varying in magnitude and types of stress. Blood samples collected before and after three real or simulated military training exercises were analyzed using the same untargeted metabolomic profiling platform. Exercises included a three-week survival school course (ST, n=36), a four-day arctic cross country ski march (AT, n=24), and a 28-day controlled diet- and exercise-induced energy deficit (CED, n=26). Log2-fold changes of >±1 in 191, 121 and 64 metabolites were identified in the ST, AT and CED datasets, respectively. Most metabolite changes were within lipid (57-63%) and amino acid metabolism (18-19%) pathways, and changes in 87 were shared across studies. The largest and most consistent increases in shared metabolites were found in acylcarnitine, fatty acid, ketone, and glutathione metabolism pathways, whereas the largest decreases were in diacylglycerol and urea cycle metabolism pathways. Multiple shared metabolites were consistently correlated with biomarkers of inflammation, tissue damage, and anabolic hormones across studies. These three studies of real and simulated military training revealed overlapping alterations in metabolomic profiles despite differences in environment and the stressors involved. Consistent changes in metabolites related to lipid metabolism, ketogenesis and oxidative stress suggest a potential common metabolomic signature associated with inflammation, tissue damage and suppression of anabolic signaling that may characterize unique physiological demands of military training.

2.
Physiol Rep ; 12(10): e16038, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38757249

RESUMEN

This study investigated the effects of EPO on hemoglobin (Hgb) and hematocrit (Hct), time trial (TT) performance, substrate oxidation, and skeletal muscle phenotype throughout 28 days of strenuous exercise. Eight males completed this longitudinal controlled exercise and feeding study using EPO (50 IU/kg body mass) 3×/week for 28 days. Hgb, Hct, and TT performance were assessed PRE and on Days 7, 14, 21, and 27 of EPO. Rested/fasted muscle obtained PRE and POST EPO were analyzed for gene expression, protein signaling, fiber type, and capillarization. Substrate oxidation and glucose turnover were assessed during 90-min of treadmill load carriage (LC; 30% body mass; 55 ± 5% V̇O2peak) exercise using indirect calorimetry, and 6-6-[2H2]-glucose PRE and POST. Hgb and Hct increased, and TT performance improved on Days 21 and 27 compared to PRE (p < 0.05). Energy expenditure, fat oxidation, and metabolic clearance rate during LC increased (p < 0.05) from PRE to POST. Myofiber type, protein markers of mitochondrial biogenesis, and capillarization were unchanged PRE to POST. Transcriptional regulation of mitochondrial activity and fat metabolism increased from PRE to POST (p < 0.05). These data indicate EPO administration during 28 days of strenuous exercise can enhance aerobic performance through improved oxygen carrying capacity, whole-body and skeletal muscle fat metabolism.


Asunto(s)
Eritropoyetina , Ejercicio Físico , Músculo Esquelético , Oxidación-Reducción , Masculino , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Adulto , Eritropoyetina/metabolismo , Eritropoyetina/farmacología , Oxidación-Reducción/efectos de los fármacos , Ejercicio Físico/fisiología , Hemoglobinas/metabolismo , Hematócrito , Metabolismo Energético/efectos de los fármacos , Adulto Joven , Metabolismo de los Lípidos/efectos de los fármacos
3.
Artículo en Inglés | MEDLINE | ID: mdl-38682243

RESUMEN

Insulin insensitivity decreases exogenous glucose oxidation and metabolic clearance rate (MCR) during aerobic exercise in unacclimatized lowlanders at high altitude (HA). Whether use of an oral insulin sensitizer prior to acute HA exposure enhances exogenous glucose oxidation is unclear. This study investigated the impact of Pioglitazone (PIO) on exogenous glucose oxidation and glucose turnover compared to placebo (PLA) during aerobic exercise at HA. Using a randomized, crossover design, native lowlanders (n=7 males, mean±SD, age: 23±6 yr, body mass: 84±11 kg) consumed 145 g (1.8 g/min) glucose while performing 80-min of steady-state (1.43±0.16 V̇O2 L/min) treadmill exercise at HA (460 mmHg) following short-term (5 days) use of PIO (15 mg oral dose per day) or PLA (microcrystalline cellulose pill). Substrate oxidation and glucose turnover were determined using indirect calorimetry and stable isotopes (13C-glucose and [6,6-2H2]-glucose). Exogenous glucose oxidation was not different between PIO (0.31±0.03 g/min) and PLA (0.32±0.09 g/min). Total carbohydrate oxidation (PIO: 1.65±0.22 g/min, PLA: 1.68±0.32 g/min) or fat oxidation (PIO: 0.10±0.0.08 g/min, PLA: 0.09±0.07 g/min) were not different between treatments. There was no treatment effect on glucose rate of appearance (PIO: 2.46±0.27, PLA: 2.43±0.27 mg/kg/min), disappearance (PIO: 2.19±0.17, PLA: 2.20 ± 0.22 mg/kg/min), or MCR (PIO: 1.63±0.37, PLA: 1.73±0.40 mL/kg/min). Results from this study indicate that PIO is not an effective intervention to enhance exogenous glucose oxidation or MCR during acute HA exposure. Lack of effect with PIO suggests the etiology of glucose metabolism dysregulation during acute HA exposure may not result from insulin resistance in peripheral tissues.

4.
Med Sci Sports Exerc ; 56(6): 1177-1185, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38291646

RESUMEN

INTRODUCTION: The US Army Load Carriage Decision Aid (LCDA) metabolic model is used by militaries across the globe and is intended to predict physiological responses, specifically metabolic costs, in a wide range of dismounted warfighter operations. However, the LCDA has yet to be adapted for vest-borne load carriage, which is commonplace in tactical populations, and differs in energetic costs to backpacking and other forms of load carriage. PURPOSE: The purpose of this study is to develop and validate a metabolic model term that accurately estimates the effect of weighted vest loads on standing and walking metabolic rate for military mission-planning and general applications. METHODS: Twenty healthy, physically active military-age adults (4 women, 16 men; age, 26 ± 8 yr old; height, 1.74 ± 0.09 m; body mass, 81 ± 16 kg) walked for 6 to 21 min with four levels of weighted vest loading (0 to 66% body mass) at up to 11 treadmill speeds (0.45 to 1.97 m·s -1 ). Using indirect calorimetry measurements, we derived a new model term for estimating metabolic rate when carrying vest-borne loads. Model estimates were evaluated internally by k -fold cross-validation and externally against 12 reference datasets (264 total participants). We tested if the 90% confidence interval of the mean paired difference was within equivalence limits equal to 10% of the measured walking metabolic rate. Estimation accuracy, precision, and level of agreement were also evaluated by the bias, standard deviation of paired differences, and concordance correlation coefficient (CCC), respectively. RESULTS: Metabolic rate estimates using the new weighted vest term were statistically equivalent ( P < 0.01) to measured values in the current study (bias, -0.01 ± 0.54 W·kg -1 ; CCC, 0.973) as well as from the 12 reference datasets (bias, -0.16 ± 0.59 W·kg -1 ; CCC, 0.963). CONCLUSIONS: The updated LCDA metabolic model calculates accurate predictions of metabolic rate when carrying heavy backpack and vest-borne loads. Tactical populations and recreational athletes that train with weighted vests can confidently use the simplified LCDA metabolic calculator provided as Supplemental Digital Content to estimate metabolic rates for work/rest guidance, training periodization, and nutritional interventions.


Asunto(s)
Metabolismo Energético , Personal Militar , Caminata , Soporte de Peso , Humanos , Femenino , Masculino , Adulto , Caminata/fisiología , Metabolismo Energético/fisiología , Adulto Joven , Soporte de Peso/fisiología , Calorimetría Indirecta , Prueba de Esfuerzo
5.
Mil Med ; 189(3-4): e515-e521, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-37646761

RESUMEN

INTRODUCTION: Considering the potential of weaponized opioids, evaluating how prophylactic countermeasures affect military-relevant performance is necessary. Naltrexone is a commercially available Food and Drug Administration-approved medication that blocks the effects of opioids with minimal side effects. However, the effects of naltrexone on the health and performance of non-substance abusing military personnel are not well described in the existing literature. METHODS: Active duty U.S. Army Soldiers (n = 16, mean ± SD, age: 23.1 ± 5.3 y) completed a series of physical, cognitive, and marksmanship tasks during a 4-day pretrial, a 7-day active trial, and a 4-day post-trial phase. During the active trial, participants were administered 50 mg of oral naltrexone daily. Physiological and biological processes were monitored with a daily review of systems, sleep monitoring, biochemistry, and hematology blood panels. RESULTS: Naltrexone did not negatively affect physical performance, cognitive functioning, marksmanship, or sleep duration (P > 0.05). Improvements were observed during the active trial compared to the pretrial phase in cognitive tasks measuring logical relations (P = 0.05), matching to sample (P = 0.04), math speed (P < 0.01), math percent correct (P = 0.04), and spatial processing (P < 0.01). Results from biochemistry and hematology blood panels remained within clinically normative ranges throughout all phases of the study. No participants were medically withdrawn; however, one participant voluntarily withdrew due to nausea and reduced appetite. CONCLUSIONS: Temporary (7-day) daily use of naltrexone was safe and did not negatively affect physical performance, cognitive functioning, marksmanship ability, or sleep in a healthy cohort of U.S. Army Soldiers.


Asunto(s)
Personal Militar , Humanos , Adolescente , Adulto Joven , Adulto , Personal Militar/psicología , Naltrexona/efectos adversos , Cognición , Sueño , Examen Físico
6.
Psychopharmacology (Berl) ; 241(3): 461-478, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38038817

RESUMEN

RATIONALE: Behavioral effects of testosterone depend on dose, acute versus sustained formulation, duration of administration, personality, genetics, and endogenous levels of testosterone. There are also considerable differences between effects of endogenous and exogenous testosterone. OBJECTIVES: This study was the secondary behavioral arm of a registered clinical trial designed to determine if testosterone protects against loss of lean body mass and lower-body muscle function induced by a severe energy deficit typical of sustained military operations. METHODS: Behavioral effects of repeated doses of testosterone on healthy young men whose testosterone was reduced by severe energy deficit were examined. This was a double-blind, placebo-controlled, between-group study. Effects of four weekly intramuscular injections of testosterone enanthate (200 mg/week, N = 24) or matching placebo (N = 26) were evaluated. Determination of sample size was based on changes in lean body mass. Tasks assessing aggression, risk-taking, competition, social cognition, vigilance, memory, executive function, and mood were repeatedly administered. RESULTS: During a period of artificially induced, low testosterone levels, consistent behavioral effects of administration of exogenous testosterone were not observed. CONCLUSIONS: Exogeneous testosterone enanthate (200 mg/week) during severe energy restriction did not reliably alter the measures of cognition. Study limitations include the relatively small sample size compared to many studies of acute testosterone administration. The findings are specific to healthy males experiencing severe energy deficit and should not be generalized to effects of other doses, formulations, or acute administration of endogenous testosterone or studies conducted with larger samples using tests of cognitive function designed to detect specific effects of testosterone.


Asunto(s)
Agresión , Testosterona , Testosterona/análogos & derivados , Masculino , Humanos , Testosterona/farmacología , Cognición , Asunción de Riesgos
7.
Physiol Rep ; 11(23): e15885, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38036455

RESUMEN

Previous studies have demonstrated both energy restriction (ER) and higher protein (HP), lower carbohydrate (LC) diets downregulate hepatic de novo lipogenesis. Little is known about the independent and combined impact of ER and HP/LC diets on tissue-specific lipid kinetics in leptin receptor-deficient, obese rodents. This study investigated the effects of ER and dietary macronutrient content on body composition; hepatic, subcutaneous adipose tissue (SAT), and visceral AT (VAT) lipid metabolic flux (2 H2 O-labeling); and blood and liver measures of cardiometabolic health in six-week-old female obese Zucker rats (Leprfa+/fa+ ). Animals were randomized to a 10-week feeding intervention: ad libitum (AL)-HC/LP (76% carbohydrate/15% protein), AL-HP/LC (35% protein/56% carbohydrate), ER-HC/LP, or ER-HP/LC. ER groups consumed 60% of the feed consumed by AL. AL gained more fat mass than ER (P-energy = 0.012) and HP/LC gained more fat mass than HC/LP (P-diet = 0.025). Hepatic triglyceride (TG) concentrations (P-interaction = 0.0091) and absolute hepatic TG synthesis (P-interaction = 0.012) were lower in ER-HP/LC versus ER-HC/LP. ER had increased hepatic, SAT, and VAT de novo cholesterol fractional synthesis, absolute hepatic cholesterol synthesis, and serum cholesterol (P-energy≤0.0035). A HP/LC diet, independent of energy intake, led to greater gains in fat mass. A HP/LC diet, in the context of ER, led to reductions in absolute hepatic TG synthesis and TG content. However, ER worsened cholesterol metabolism. Increased adipose tissue TG retention with the HP/LC diet may reflect improved lipid storage capacity and be beneficial in this genetic model of obesity.


Asunto(s)
Carbohidratos de la Dieta , Lipogénesis , Animales , Femenino , Ratas , Colesterol/metabolismo , Carbohidratos de la Dieta/metabolismo , Proteínas en la Dieta/farmacología , Proteínas en la Dieta/metabolismo , Hígado/metabolismo , Obesidad/metabolismo , Ratas Zucker , Triglicéridos
8.
Front Endocrinol (Lausanne) ; 14: 1219454, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37790607

RESUMEN

Hormones and mechanical loading co-regulate bone throughout the lifespan. In this review, we posit that times of increased hormonal influence on bone provide opportunities for exercise to optimize bone strength and prevent fragility. Examples include endogenous secretion of growth hormones and sex steroids that modulate adolescent growth and exogenous administration of osteoanabolic drugs like teriparatide, which increase bone stiffness, or its resistance to external forces. We review evidence that after bone stiffness is increased due to hormonal stimuli, mechanoadaptive processes follow. Specifically, exercise provides the mechanical stimulus necessary to offset adaptive bone resorption or promote adaptive bone formation. The collective effects of both decreased bone resorption and increased bone formation optimize bone strength during youth and preserve it later in life. These theoretical constructs provide physiologic foundations for promoting exercise throughout life.


Asunto(s)
Densidad Ósea , Resorción Ósea , Adolescente , Humanos , Huesos , Osteogénesis , Hormona del Crecimiento/farmacología
9.
J Int Soc Sports Nutr ; 20(1): 2263409, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37800468

RESUMEN

Position Statement: The International Society of Sports Nutrition (ISSN) presents this position based on a critical examination of literature surrounding the effects of essential amino acid (EAA) supplementation on skeletal muscle maintenance and performance. This position stand is intended to provide a scientific foundation to athletes, dietitians, trainers, and other practitioners as to the benefits of supplemental EAA in both healthy and resistant (aging/clinical) populations. EAAs are crucial components of protein intake in humans, as the body cannot synthesize them. The daily recommended intake (DRI) for protein was established to prevent deficiencies due to inadequate EAA consumption. The following conclusions represent the official position of the Society: 1. Initial studies on EAAs' effects on skeletal muscle highlight their primary role in stimulating muscle protein synthesis (MPS) and turnover. Protein turnover is critical for replacing degraded or damaged muscle proteins, laying the metabolic foundation for enhanced functional performance. Consequently, research has shifted to examine the effects of EAA supplementation - with and without the benefits of exercise - on skeletal muscle maintenance and performance. 2. Supplementation with free-form EAAs leads to a quick rise in peripheral EAA concentrations, which in turn stimulates MPS. 3. The safe upper limit of EAA intake (amount), without inborn metabolic disease, can easily accommodate additional supplementation. 4. At rest, stimulation of MPS occurs at relatively small dosages (1.5-3.0 g) and seems to plateau at around 15-18 g. 5. The MPS stimulation by EAAs does not require non-essential amino acids. 6. Free-form EAA ingestion stimulates MPS more than an equivalent amount of intact protein. 7. Repeated EAA-induced MPS stimulation throughout the day does not diminish the anabolic effect of meal intake. 8. Although direct comparisons of various formulas have yet to be investigated, aging requires a greater proportion of leucine to overcome the reduced muscle sensitivity known as "anabolic resistance." 9. Without exercise, EAA supplementation can enhance functional outcomes in anabolic-resistant populations. 10. EAA requirements rise in the face of caloric deficits. During caloric deficit, it's essential to meet whole-body EAA requirements to preserve anabolic sensitivity in skeletal muscle.


Asunto(s)
Aminoácidos , Músculo Esquelético , Humanos , Leucina , Aminoácidos/farmacología , Proteínas Musculares/metabolismo , Suplementos Dietéticos
10.
Am J Physiol Cell Physiol ; 325(4): C1144-C1153, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37721006

RESUMEN

Chronically adhering to high-fat ketogenic diets or consuming ketone monoester supplements elicits ketosis. Resulting changes in substrate metabolism appear to be drastically different between ketogenic diets and ketone supplements. Consuming a ketogenic diet increases fatty acid oxidation with concomitant decreases in endogenous carbohydrate oxidation. Increased fat oxidation eventually results in an accumulation of circulating ketone bodies, which are metabolites of fatty acids that serve as an alternative source of fuel. Conversely, consuming ketone monoester supplements rapidly increases circulating ketone body concentrations that typically exceed those achieved by adhering to ketogenic diets. Rapid increases in ketone body concentrations with ketone monoester supplementation elicit a negative feedback inhibition that reduces fatty acid mobilization during aerobic exercise. Supplement-derived ketosis appears to have minimal impact on sparing of muscle glycogen or minimizing of carbohydrate oxidation during aerobic exercise. This review will discuss the substrate metabolic and associated aerobic performance responses to ketogenic diets and ketone supplements.


Asunto(s)
Dieta Cetogénica , Cetosis , Humanos , Cetonas , Cuerpos Cetónicos/metabolismo , Ácidos Grasos , Carbohidratos , Suplementos Dietéticos , Ejercicio Físico/fisiología
11.
Curr Opin Clin Nutr Metab Care ; 26(4): 347-352, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37057671

RESUMEN

PURPOSE OF REVIEW: Highlight contemporary evidence examining the effects of carbohydrate restriction on the intracellular regulation of muscle mass and anaerobic performance. RECENT FINDINGS: Low carbohydrate diets increase fat oxidation and decrease fat mass. Emerging evidence suggests that dietary carbohydrate restriction increases protein oxidation, thereby limiting essential amino acid availability necessary to stimulate optimal muscle protein synthesis and promote muscle recovery. Low carbohydrate feeding for 24 h increases branched-chain amino acid (BCAA) oxidation and reduces myogenic regulator factor transcription compared to mixed-macronutrient feeding. When carbohydrate restriction is maintained for 8 to 12 weeks, the alterations in anabolic signaling, protein synthesis, and myogenesis likely contribute to limited hypertrophic responses to resistance training. The blunted hypertrophic response to resistance training when carbohydrate availability is low does not affect muscle strength, whereas persistently low muscle glycogen does impair anaerobic output during high-intensity sprint and time to exhaustion tests. SUMMARY: Dietary carbohydrate restriction increases BCAA oxidation and impairs muscle hypertrophy and anaerobic performance, suggesting athletes who need to perform high-intensity exercise should consider avoiding dietary strategies that restrict carbohydrate.


Asunto(s)
Carbohidratos de la Dieta , Resistencia Física , Humanos , Resistencia Física/fisiología , Anaerobiosis , Carbohidratos de la Dieta/metabolismo , Dieta Baja en Carbohidratos , Aminoácidos de Cadena Ramificada/metabolismo , Hipertrofia/metabolismo , Músculo Esquelético/metabolismo
12.
Metabolomics ; 19(4): 39, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37041398

RESUMEN

INTRODUCTION: The metabolomic profiles of Soldiers entering the U.S. Special Forces Assessment and Selection course (SFAS) have not been evaluated. OBJECTIVES: To compare pre-SFAS blood metabolomes of Soldiers selected during SFAS versus those not selected, and explore the relationships between the metabolome, physical performance, and diet quality. METHODS: Fasted blood samples and food frequency questionnaires were collected from 761 Soldiers prior to entering SFAS to assess metabolomic profiles and diet quality, respectively. Physical performance was assessed throughout SFAS. RESULTS: Between-group differences (False Discovery Rate < 0.05) in 108 metabolites were detected. Selected candidates had higher levels of compounds within xenobiotic, pentose phosphate, and corticosteroid metabolic pathways, while non-selected candidates had higher levels of compounds potentially indicative of oxidative stress (i.e., sphingomyelins, acylcarnitines, glutathione, amino acids). Multiple compounds higher in non-selected versus selected candidates included: 1-carboxyethylphenylalanine; 4-hydroxy-nonenal-glutathione; α-hydroxyisocaproate; hexanoylcarnitine; sphingomyelin and were associated with lower diet quality and worse physical performance.  CONCLUSION: Candidates selected during SFAS had higher pre-SFAS levels of circulating metabolites that were associated with resistance to oxidative stress, higher physical performance and higher diet quality. In contrast, non-selected candidates had higher levels of metabolites potentially indicating elevated oxidative stress. These findings indicate that Soldiers who were selected for continued Special Forces training enter the SFAS course with metabolites associated with healthier diets and better physical performance. Additionally, the non-selected candidates had higher levels of metabolites that may indicate elevated oxidative stress, which could result from poor nutrition, non-functional overreaching/overtraining, or incomplete recovery from previous physical activity.


Asunto(s)
Dieta , Personal Militar , Estrés Oxidativo , Acondicionamiento Físico Humano , Biomarcadores/metabolismo , Metabolómica , Humanos , Masculino , Adulto Joven , Adulto , Resiliencia Psicológica , Estados Unidos
13.
Int J Circumpolar Health ; 82(1): 2192392, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36934427

RESUMEN

.High daily energy expenditure without compensatory increases in energy intake results in severe energy deficits during cold-weather military operations. The severity of energy deficits has been proportionally linked to declines in body mass, negative protein balance, suppression of androgen hormones, increases in systemic inflammation and degraded physical performance. Food availability does not appear to be the predominant factor causing energy deficits; providing additional rations or supplement snack bars does not reduce the severity of the energy deficits. Nutrition interventions that allow greater energy intake could be effective for reducing energy deficits during cold-weather military operations. One potential intervention is to increase energy density (i.e. energy per unit mass of food) by increasing dietary fat. Our laboratory recently reported that self-selected higher energy intakes and reductions in energy deficits were primarily driven by fat intake (r = 0.891, r2 = 0.475), which, of the three macronutrients. Further, soldiers who ate more fat lost less body mass, had lower inflammation, and maintained net protein balance compared to those who ate less fat. These data suggest that consuming high-fat energy-dense foods may be a viable nutritional intervention that mitigates the negative physiological effects of energy deficit and sustains physical performance during cold-weather military operations.


Asunto(s)
Personal Militar , Humanos , Estado Nutricional , Ingestión de Energía , Suplementos Dietéticos , Frío
14.
Physiol Rep ; 11(6): e15649, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36949577

RESUMEN

Physical performance decrements observed during multi-stressor military operations may be attributed, in part, to cellular membrane dysfunction, which is quantifiable using phase angle (PhA) derived from bioelectrical impedance analysis (BIA). Positive relationships between PhA and performance have been previously reported in cross-sectional studies and following longitudinal exercise training programs, but whether changes in PhA are indicative of acute decrements in performance during military operations is unknown. Data from the Optimizing Performance for Soldiers II study, a clinical trial examining the effects of exogenous testosterone administration on body composition and performance during military stress, was used to evaluate changes in PhA and their associations with physical performance. Recreationally active, healthy males (n = 34; 26.6 ± 4.3 years; 77.9 ± 12.4 kg) were randomized to receive testosterone undecanoate or placebo before a 20-day simulated military operation, which was followed by a 23-day recovery period. PhA of the whole-body (Whole) and legs (Legs) and physical performance were measured before (PRE) and after (POST) the simulated military operation as well as in recovery (REC). Independent of treatment, PhAWhole and PhALegs decreased from PRE to POST (p < 0.001), and PhALegs , but not PhAWhole , remained lower at REC than PRE. PhAWhole at PRE and REC were associated with vertical jump height and Wingate peak power (p < 0.001-0.050), and PhAWhole at PRE was also associated with 3-RM deadlift mass (p = 0.006). However, PhA at POST and changes in PhA from PRE to POST were not correlated with any performance measure (p > 0.05). Additionally, PhA was not associated with aerobic performance at any timepoint. In conclusion, reduced PhA from PRE to POST provides indirect evidence of cellular membrane disruption. Associations between PhA and strength and power were only evident at PRE and REC, suggesting PhA may be a useful indicator of strength and power, but not aerobic capacity, in non-stressed conditions, and not a reliable indicator of physical performance during severe physiological stress.


Asunto(s)
Personal Militar , Masculino , Humanos , Impedancia Eléctrica , Estudios Transversales , Composición Corporal/fisiología , Ejercicio Físico
15.
Am J Clin Nutr ; 117(4): 802-813, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36796647

RESUMEN

BACKGROUND: Recent 3-dimensional optical (3DO) imaging advancements have provided more accessible, affordable, and self-operating opportunities for assessing body composition. 3DO is accurate and precise in clinical measures made by DXA. However, the sensitivity for monitoring body composition change over time with 3DO body shape imaging is unknown. OBJECTIVES: This study aimed to evaluate the ability of 3DO in monitoring body composition changes across multiple intervention studies. METHODS: A retrospective analysis was performed using intervention studies on healthy adults that were complimentary to the cross-sectional study, Shape Up! Adults. Each participant received a DXA (Hologic Discovery/A system) and 3DO (Fit3D ProScanner) scan at the baseline and follow-up. 3DO meshes were digitally registered and reposed using Meshcapade to standardize the vertices and pose. Using an established statistical shape model, each 3DO mesh was transformed into principal components, which were used to predict whole-body and regional body composition values using published equations. Body composition changes (follow-up minus the baseline) were compared with those of DXA using a linear regression analysis. RESULTS: The analysis included 133 participants (45 females) in 6 studies. The mean (SD) length of follow-up was 13 (5) wk (range: 3-23 wk). Agreement between 3DO and DXA (R2) for changes in total FM, total FFM, and appendicular lean mass were 0.86, 0.73, and 0.70, with root mean squared errors (RMSEs) of 1.98 kg, 1.58 kg, and 0.37 kg, in females and 0.75, 0.75, and 0.52 with RMSEs of 2.31 kg, 1.77 kg, and 0.52 kg, in males, respectively. Further adjustment with demographic descriptors improved the 3DO change agreement to changes observed with DXA. CONCLUSIONS: Compared with DXA, 3DO was highly sensitive in detecting body shape changes over time. The 3DO method was sensitive enough to detect even small changes in body composition during intervention studies. The safety and accessibility of 3DO allows users to self-monitor on a frequent basis throughout interventions. This trial was registered at clinicaltrials.gov as NCT03637855 (Shape Up! Adults; https://clinicaltrials.gov/ct2/show/NCT03637855); NCT03394664 (Macronutrients and Body Fat Accumulation: A Mechanistic Feeding Study; https://clinicaltrials.gov/ct2/show/NCT03394664); NCT03771417 (Resistance Exercise and Low-Intensity Physical Activity Breaks in Sedentary Time to Improve Muscle and Cardiometabolic Health; https://clinicaltrials.gov/ct2/show/NCT03771417); NCT03393195 (Time Restricted Eating on Weight Loss; https://clinicaltrials.gov/ct2/show/NCT03393195), and NCT04120363 (Trial of Testosterone Undecanoate for Optimizing Performance During Military Operations; https://clinicaltrials.gov/ct2/show/NCT04120363).


Asunto(s)
Composición Corporal , Imagen Óptica , Masculino , Adulto , Femenino , Humanos , Absorciometría de Fotón/métodos , Estudios Transversales , Estudios Retrospectivos , Composición Corporal/fisiología , Impedancia Eléctrica , Índice de Masa Corporal
16.
J Nutr ; 153(3): 749-759, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36805182

RESUMEN

BACKGROUND: The lack of complete amino acid composition data in food composition databases has made determining population-wide amino acid intake difficult. OBJECTIVES: This cross-sectional study characterizes habitual intakes of each amino acid and adherence to dietary requirements for each essential amino acid (EAA) in the US population. METHODS: Food and Nutrient Database for Dietary Studies ingredient codes with missing amino acid composition data were matched to similar ingredients with available data so that amino acid composition could be determined for 100% of foods reported in the dietary intake assessment component of NHANES. Amino acid intakes during NHANES 2001-2018 (n = 72,831; ≥2 y) were calculated as relative (mg·kg of ideal body weight-1·d-1) intakes. Data from NHANES 2011-2018 were used to determine the percentage of population consuming less than that recommended by the DRIs for each EAA by age, sex, and race/ethnicity. RESULTS: Relative intakes of EAAs and NEAAs were greatest in those 2-3 y and lowest in older individuals (≥71 y or ≥80 y). In females aged 2-18 y, relative intakes of EAAs were lowest in non-Hispanic White (NHW; histidine, lysine, threonine, methionine, and cysteine) and non-Hispanic Black (NHB; valine, isoleucine, leucine, phenylalanine, tryptophan, and tyrosine) populations and highest in the Asian population. In females aged ≥19 y, relative intakes were lowest in NHW (lysine and methionine only) and NHB populations and highest in the Asian population. In males aged 2-18 y, relative intakes of EAAs were lowest in the NHB population and highest in the Asian population. In males ≥19 y, relative intakes were lowest in NHB and NHW (lysine only) populations and highest in the Hispanic population. Less than 1% of individuals aged ≥19 y did not meet the Estimated Average Requirements for each EAA. CONCLUSIONS: EAA intakes in the US population exceed recommended minimum population requirements. Future studies can use the method described here to quantify amino acid intake and examine relationships with health and disease.


Asunto(s)
Dieta , Lisina , Masculino , Femenino , Humanos , Estados Unidos , Anciano , Ingesta Diaria Recomendada , Encuestas Nutricionales , Estudios Transversales , Aminoácidos , Aminoácidos Esenciales , Metionina
17.
J Strength Cond Res ; 37(4): 919-929, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36580280

RESUMEN

ABSTRACT: Spiering, BA, Clark, BC, Schoenfeld, BJ, Foulis, SA, and Pasiakos, SM. Maximizing strength: the stimuli and mediators of strength gains and their application to training and rehabilitation. J Strength Cond Res 37(4): 919-929, 2023-Traditional heavy resistance exercise (RE) training increases maximal strength, a valuable adaptation in many situations. That stated, some populations seek new opportunities for pushing the upper limits of strength gains (e.g., athletes and military personnel). Alternatively, other populations strive to increase or maintain strength but cannot perform heavy RE (e.g., during at-home exercise, during deployment, or after injury or illness). Therefore, the purpose of this narrative review is to (a) identify the known stimuli that trigger gains in strength; (b) identify the known factors that mediate the long-term effectiveness of these stimuli; (c) discuss (and in some cases, speculate on) potential opportunities for maximizing strength gains beyond current limits; and (d) discuss practical applications for increasing or maintaining strength when traditional heavy RE cannot be performed. First, by conceptually deconstructing traditional heavy RE, we identify that strength gains are stimulated through a sequence of events, namely: giving maximal mental effort, leading to maximal neural activation of muscle to produce forceful contractions, involving lifting and lowering movements, training through a full range of motion, and (potentially) inducing muscular metabolic stress. Second, we identify factors that mediate the long-term effectiveness of these RE stimuli, namely: optimizing the dose of RE within a session, beginning each set of RE in a minimally fatigued state, optimizing recovery between training sessions, and (potentially) periodizing the training stimulus over time. Equipped with these insights, we identify potential opportunities for further maximizing strength gains. Finally, we identify opportunities for increasing or maintaining strength when traditional heavy RE cannot be performed.


Asunto(s)
Fuerza Muscular , Entrenamiento de Fuerza , Humanos , Fuerza Muscular/fisiología , Músculo Esquelético/fisiología , Ejercicio Físico/fisiología , Atletas , Adaptación Fisiológica/fisiología
18.
Med Sci Sports Exerc ; 55(4): 661-669, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36563086

RESUMEN

INTRODUCTION/PURPOSE: The effects of testosterone on energy and substrate metabolism during energy deficit are unknown. The objective of this study was to determine the effects of weekly testosterone enanthate (TEST; 200 mg·wk -1 ) injections on energy expenditure, energy substrate oxidation, and related gene expression during 28 d of energy deficit compared with placebo (PLA). METHODS: After a 14-d energy balance phase, healthy men were randomly assigned to TEST ( n = 24) or PLA ( n = 26) for a 28-d controlled diet- and exercise-induced energy deficit (55% below total energy needs by reducing energy intake and increasing physical activity). Whole-room indirect calorimetry and 24-h urine collections were used to measure energy expenditure and energy substrate oxidation during balance and deficit. Transcriptional regulation of energy and substrate metabolism was assessed using quantitative reverse transcription-polymerase chain reaction from rested/fasted muscle biopsy samples collected during balance and deficit. RESULTS: Per protocol design, 24-h energy expenditure increased ( P < 0.05) and energy intake decreased ( P < 0.05) in TEST and PLA during deficit compared with balance. Carbohydrate oxidation decreased ( P < 0.05), whereas protein and fat oxidation increased ( P < 0.05) in TEST and PLA during deficit compared with balance. Change (∆; deficit minus balance) in 24-h energy expenditure was associated with ∆activity factor ( r = 0.595), but not ∆fat-free mass ( r = 0.147). Energy sensing (PRKAB1 and TP53), mitochondria (TFAM and COXIV), fatty acid metabolism (CD36/FAT, FABP, CPT1b, and ACOX1) and storage (FASN), and amino acid metabolism (BCAT2 and BCKHDA) genes were increased ( P < 0.05) during deficit compared with balance, independent of treatment. CONCLUSIONS: These data demonstrate that increased physical activity and not exogenous testosterone administration is the primary determinate of whole-body and skeletal muscle metabolic adaptations during diet- and exercise-induced energy deficit.


Asunto(s)
Metabolismo Energético , Testosterona , Masculino , Humanos , Oxidación-Reducción , Metabolismo Energético/fisiología , Ejercicio Físico/fisiología , Poliésteres
19.
Physiol Behav ; 258: 114010, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36349660

RESUMEN

Sustained operations (SUSOPS) require military personnel to conduct combat and training operations while experiencing physical and cognitive stress and limited sleep. These operations are often conducted in a state of negative energy balance and are associated with degraded cognitive performance and mood. Whether maintaining energy balance can mitigate these declines is unclear. This randomized crossover study assessed the effects of energy balance on cognitive performance, risk-taking propensity, ambulatory vigilance, and mood during a simulated 72-h SUSOPS. METHODS: Ten male Soldiers (mean ± SE; 22.4 ± 1.7 y; body weight 87.3 ± 1.1 kg) completed two, 72-h simulated SUSOPS in random order, separated by 7 days of recovery. Each SUSOPS elicited ∼4500 kcal/d total energy expenditure and restricted sleep to 4 h/night. During SUSOPS, participants consumed either an energy-balanced or restricted diet that induced a 43 ± 3% energy deficit. A cognitive test battery was administered each morning and evening to assess: vigilance, working memory, grammatical reasoning, risk-taking propensity, and mood. Real-time ambulatory vigilance was assessed each morning, evening, and night via a wrist-worn monitoring device. RESULTS: Participants exhibited heightened risk-taking propensity (p = 0.047) with lower self-reported self-control (p = 0.021) and fatigue (p = 0.013) during energy deficit compared to during energy balance. Vigilance accuracy (p < 0.001) and working memory (p = 0.040) performance decreased, and vigilance lapses increased (p < 0.001) during SUSOPS, but did not differ by diet. Percentage of correct responses to ambulatory vigilance stimuli varied during SUSOPS (p = 0.019) independent of diet, with generally poorer performance during the morning and night. Total mood disturbance (p = 0.001), fatigue (p < 0.001), tension (p = 0.003), and confusion (p = 0.036) increased whereas vigor decreased (p < 0.001) during SUSOPS, independent of diet. CONCLUSION: Prolonged physical activity combined with sleep restriction is associated with impaired vigilance, memory, and mood state. Under such conditions, maintaining energy balance prevents increased risk-taking and improves self-control, but does not improve other aspects of cognitive function or mood. Given the small sample in the present study, replication in a larger cohort is warranted.


Asunto(s)
Personal Militar , Humanos , Masculino , Personal Militar/psicología , Estudios Cruzados , Afecto/fisiología , Cognición/fisiología , Fatiga/psicología , Metabolismo Energético , Asunción de Riesgos , Privación de Sueño
20.
Biol Psychol ; 176: 108468, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36481265

RESUMEN

Previous research has shown greater risk aversion when people make choices about lives than cash. We tested the hypothesis that compared to placebo, exogenous testosterone administration would lead to riskier choices about cash than lives, given testosterone's association with financial risk-taking and reward sensitivity. A double-blind, placebo-controlled, randomized trial was conducted to test this hypothesis (Clinical Trials Registry: NCT02734238, www.clinicaltrials.gov). We collected functional magnetic resonance imaging (fMRI) data from 50 non-obese males before and shortly after 28 days of severe exercise-and-diet-induced energy deficit, during which testosterone (200 mg testosterone enanthate per week in sesame oil) or placebo (sesame seed oil only) was administered. Because we expected circulating testosterone levels to be reduced due to severe energy deficit, testosterone administration served a restorative function to mitigate the impact of energy deficit on testosterone levels. The fMRI task involved making choices under uncertainty for lives and cash. We also manipulated whether the outcomes were presented as gains or losses. Consistent with prospect theory, we observed the reflection effect such that participants were more risk averse when outcomes were presented as gains than losses. Brain activation in the thalamus covaried with individual differences in exhibiting the reflection effect. Testosterone did not impact choice, but it increased sensitivity to negative feedback following risky choices. These results suggest that exogenous testosterone administration in the context of energy deficit can impact some aspects of risky choice, and that individual differences in the reflection effect engage a brain structure involved in processing emotion, reward and risk.


Asunto(s)
Juego de Azar , Asunción de Riesgos , Masculino , Humanos , Testosterona , Juego de Azar/psicología , Conducta de Elección/fisiología , Encéfalo , Recompensa , Toma de Decisiones/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...