Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Endocrinology ; 162(12)2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34477204

RESUMEN

Recent antecedent hypoglycemia is a known source of defective glucose counter-regulation in diabetes; the mechanisms perpetuating the cycle of progressive α-cell failure and recurrent hypoglycemia remain unknown. Somatostatin has been shown to suppress the glucagon response to acute hypoglycemia in rodent models of type 1 diabetes. We hypothesized that somatostatin receptor 2 antagonism (SSTR2a) would restore glucagon counterregulation and delay the onset of insulin-induced hypoglycemia in recurrently hypoglycemic, nondiabetic male rats. Healthy, male, Sprague-Dawley rats (n = 39) received bolus injections of insulin (10 U/kg, 8 U/kg, 5 U/kg) on 3 consecutive days to induce hypoglycemia. On day 4, animals were then treated with SSTR2a (10 mg/kg; n = 17) or vehicle (n = 12) 1 hour prior to the induction of hypoglycemia using insulin (5 U/kg). Plasma glucagon level during hypoglycemia was ~30% lower on day 3 (150 ± 75 pg/mL; P < .01), and 68% lower on day 4 in the vehicle group (70 ± 52 pg/mL; P < .001) compared with day 1 (219 ± 99 pg/mL). On day 4, SSTR2a prolonged euglycemia by 25 ± 5 minutes (P < .05) and restored the plasma glucagon response to hypoglycemia. Hepatic glycogen content of SSTR2a-treated rats was 35% lower than vehicle controls after hypoglycemia induction on day 4 (vehicle: 20 ± 7.0 vs SSTR2a: 13 ± 4.4 µmol/g; P < .01). SSTR2a treatment reverses the cumulative glucagon deficit resulting from 3 days of antecedent hypoglycemia in healthy rats. This reversal is associated with decreased hepatic glycogen content and delayed time to hypoglycemic onset. We conclude that recurrent hypoglycemia produces glucagon counterregulatory deficiency in healthy male rats, which can be improved by SSTR2a.


Asunto(s)
Glucagón/metabolismo , Hipoglucemia/metabolismo , Péptidos Cíclicos/farmacología , Animales , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Glucagón/efectos de los fármacos , Glucosa/metabolismo , Antagonistas de Hormonas/farmacología , Hipoglucemia/patología , Glucógeno Hepático/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Receptores de Somatostatina/antagonistas & inhibidores , Recurrencia
4.
Metabolites ; 6(3)2016 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-27527232

RESUMEN

Glucocorticoids (GCs) are steroid hormones that exert important physiological actions on metabolism. Given that GCs also exert potent immunosuppressive and anti-inflammatory actions, synthetic GCs such as prednisolone and dexamethasone were developed for the treatment of autoimmune- and inflammatory-related diseases. The synthetic GCs are undoubtedly efficient in terms of their therapeutic effects, but are accompanied by significant adverse effects on metabolism, specifically glucose metabolism. Glucose intolerance and reductions in insulin sensitivity are among the major concerns related to GC metabolic side effects, which may ultimately progress to type 2 diabetes mellitus. A number of pre-clinical and clinical studies have aimed to understand the repercussions of GCs on glucose metabolism and the possible mechanisms of GC action. This review intends to summarize the main alterations that occur in liver, skeletal muscle, adipose tissue, and pancreatic islets in the context of GC-induced glucose intolerance. For this, both experimental (animals) and clinical studies were selected and, whenever possible, the main cellular mechanisms involved in such GC-side effects were discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...