Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomedicines ; 9(8)2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-34440136

RESUMEN

Cold physical plasma, a partially ionized gas rich in reactive oxygen species (ROS), is receiving increasing interest as a novel anticancer agent via two modes. The first involves its application to cells and tissues directly, while the second uses physical plasma-derived ROS to oxidize liquids. Saline is a clinically accepted liquid, and here we explored the suitability of plasma-oxidized saline (POS) as anticancer agent technology in vitro and in vivo using the Ehrlich Ascites Carcinoma (EAC) model. EAC mainly grows as a suspension in the peritoneal cavity of mice, making this model ideally suited to test POS as a putative agent against peritoneal carcinomatosis frequently observed with colon, pancreas, and ovarium metastasis. Five POS injections led to a reduction of the tumor burden in vivo as well as in a decline of EAC cell growth and an arrest in metabolic activity ex vivo. The treatment was accompanied by a decreased antioxidant capacity of Ehrlich tumor cells and increased lipid oxidation in the ascites supernatants, while no other side effects were observed. Oxaliplatin and hydrogen peroxide were used as controls and mediated better and worse outcomes, respectively, with the former but not the latter inducing profound changes in the inflammatory milieu among 13 different cytokines investigated in ascites fluid. Modulation of inflammation in the POS group was modest but significant. These results promote POS as a promising candidate for targeting peritoneal carcinomatosis and malignant ascites and suggest EAC to be a suitable and convenient model for analyzing innovative POS approaches and combination therapies.

2.
Pathol Res Pract ; 216(11): 153218, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33002848

RESUMEN

Malignant melanoma is the most dangerous form of skin cancer. Despite new therapies for melanoma treatment, effective therapy is mainly limited by excessive metastasis. Currently, the factors determining metastasis development are not elucidated, but oxidative stress was suggested to be involved. To this end, we analyzed oxidative stress parameters during the metastatic development using the syngeneic B16F10 melanoma model. An increase in blood plasma lipid peroxidation occurred at the earliest stage of the disease, with a progressive decrease in oxidative damage and an increase in antioxidant defense. Vice versa, increased lipid peroxidation and 3-nitrotyrosine, and decreased antioxidant parameters were observed in the metastatic nodules throughout the disease. This was concomitant with a progressive increase in vascular endothelial growth factor and proliferating cell nuclear antigen. We conclude that the oxidative stress in the bloodstream decreases during the metastatic process and that nitrosative stress increases during the proliferation and growth of metastatic nodules in the tumor microenvironment. These results will help to better understand the role of oxidative stress during melanoma metastasis.


Asunto(s)
Neoplasias Pulmonares/secundario , Melanoma/secundario , Metástasis de la Neoplasia/patología , Estrés Oxidativo/fisiología , Neoplasias Cutáneas/patología , Animales , Línea Celular Tumoral , Progresión de la Enfermedad , Neoplasias Pulmonares/metabolismo , Melanoma/metabolismo , Ratones , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Cutáneas/metabolismo
3.
Cancers (Basel) ; 12(7)2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32708225

RESUMEN

Cutaneous squamous cell carcinoma (SCC) is the most prevalent cancer worldwide, increasing the cost of healthcare services and with a high rate of morbidity. Its etiology is linked to chronic ultraviolet (UV) exposure that leads to malignant transformation of keratinocytes. Invasive growth and metastasis are severe consequences of this process. Therapy-resistant and highly aggressive SCC is frequently fatal, exemplifying the need for novel treatment strategies. Cold physical plasma is a partially ionized gas, expelling therapeutic doses of reactive oxygen and nitrogen species that were investigated for their anticancer capacity against SCC in vitro and SCC-like lesions in vivo. Using the kINPen argon plasma jet, a selective growth-reducing action of plasma treatment was identified in two SCC cell lines in 2D and 3D cultures. In vivo, plasma treatment limited the progression of UVB-induced SSC-like skin lesions and dermal degeneration without compromising lesional or non-lesional skin. In lesional tissue, this was associated with a decrease in cell proliferation and the antioxidant transcription factor Nrf2 following plasma treatment, while catalase expression was increased. Analysis of skin adjacent to the lesions and determination of global antioxidant parameters confirmed the local but not systemic action of the plasma anticancer therapy in vivo.

4.
Int J Mol Sci ; 21(4)2020 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-32085661

RESUMEN

Despite continuous advances in therapy, malignant melanoma is still among the deadliest types of cancer. At the same time, owing to its high plasticity and immunogenicity, melanoma is regarded as a model tumor entity when testing new treatment approaches. Cold physical plasma is a novel anticancer tool that utilizes a plethora of reactive oxygen species (ROS) being deposited on the target cells and tissues. To test whether plasma treatment would enhance the toxicity of an established antitumor therapy, ionizing radiation, we combined both physical treatment modalities targeting B16F10 murine melanoma cell in vitro. Repeated rather than single radiotherapy, in combination with gas plasma-introduced ROS, induced apoptosis and cell cycle arrest in an additive fashion. In tendency, gas plasma treatment sensitized the cells to subsequent radiotherapy rather than the other way around. This was concomitant with increased levels of TNFα, IL6, and GM-CSF in supernatants. Murine JAWS dendritic cells cultured in these supernatants showed an increased expression of cell surface activation markers, such as MHCII and CD83. For PD-L1 and PD-L2, increased expression was observed. Our results are the first to suggest an additive therapeutic effect of gas plasma and radiotherapy, and translational tumor models are needed to develop this concept further.


Asunto(s)
Factores Inmunológicos/uso terapéutico , Melanoma Experimental/inmunología , Melanoma Experimental/radioterapia , Gases em Plasma/uso terapéutico , Animales , Apoptosis , Puntos de Control del Ciclo Celular/efectos de los fármacos , Células Dendríticas/efectos de los fármacos , Factores Inmunológicos/farmacología , Ratones , Gases em Plasma/farmacología , Especies Reactivas de Oxígeno/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Regulación hacia Arriba/efectos de los fármacos
5.
Cell Death Dis ; 9(12): 1179, 2018 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-30518936

RESUMEN

Malignant melanoma is an aggressive cancer that develops drug resistance leading to poor prognosis. Efficient delivery of chemotherapeutic drugs to the tumor tissue remains a major challenge in treatment regimens. Using murine (B16) and human (SK-MEL-28) melanoma cells, we investigated traditional cytotoxic agents in combination with cold physical plasma-derived oxidants. We report synergistic cytotoxicity of doxorubicin and epirubicin, and additive toxicity of oxaliplatin with plasma exposure in coefficient of drug interaction analysis. The combination treatment led to an increased DNA damage response (increased phosphorylation of ATM, γ-H2AX foci, and micronuclei formation). There was also an enhanced secretion of immunogenic cell death markers ATP and CXCL10 in cell culture supernatants following combination treatment. The observed synergistic effects in tumor cells was due to enhanced intracellular doxorubicin accumulation via upregulation of the organic cationic transporter SLC22A16 by plasma treatment. The doxorubicin uptake was reversed by pretreating cells with antioxidants or calcium influx inhibitor BTP2. Endoribonuclease-prepared siRNAs (esiRNA)-mediated knockdown of SLC22A16 inhibited the additive cytotoxic effect in tumor cells. SK-MEL 28 and THP-1 monocytes co-culture led to greater THP-1 cell migration and SK-MEL-28 cytotoxicity when compared with controls. Taken together, we propose pro-oxidant treatment modalities to sensitize chemoresistant melanoma cells towards subsequent chemotherapy, which may serve as therapeutic strategy in combination treatment in oncology.


Asunto(s)
Antineoplásicos/farmacología , Células Epiteliales/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Proteínas de Transporte de Catión Orgánico/genética , Gases em Plasma/farmacología , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Técnicas de Cocultivo , Terapia Combinada , Doxorrubicina/farmacología , Epirrubicina/farmacología , Células Epiteliales/metabolismo , Células Epiteliales/patología , Histonas/genética , Histonas/metabolismo , Humanos , Melanoma Experimental , Ratones , Proteínas de Transporte de Catión Orgánico/agonistas , Proteínas de Transporte de Catión Orgánico/metabolismo , Oxaliplatino/farmacología , Células THP-1 , Vorinostat/farmacología
6.
Sci Rep ; 8(1): 12734, 2018 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-30143716

RESUMEN

Despite striking advances in the treatment of metastasized melanoma, the disease is often still fatal. Attention is therefore paid towards combinational regimens. Oxidants endogenously produced in mitochondria are currently targeted in pre-clinical and clinical studies. Cytotoxic synergism of mitochondrial cytochrome c oxidase (CcO) inhibition in conjunction with addition of exogenous oxidants in 2D and 3D melanoma cell culture models were examined. Murine (B16) and human SK-MEL-28 melanoma cells exposed to low-dose CcO inhibitors (potassium cyanide or sodium azide) or exogenous oxidants alone were non-toxic. However, we identified a potent cytotoxic synergism upon CcO inhibition and plasma-derived oxidants that led to rapid onset of caspase-independent melanoma cell death. This was mediated by mitochondrial dysfunction induced by superoxide elevation and ATP depletion. This observation was validated by siRNA-mediated knockdown of COX4I1 in SK-MEL-28 cells with cytotoxicity in the presence of exogenous oxidants. Similar effects were obtained with ADDA 5, a recently identified specific inhibitor of CcO activity showing low toxicity in vivo. Human keratinocytes were not affected by this combinational treatment, suggesting selective effects on melanoma cells. Hence, targeting mitochondrial CcO activity in conjunction with exogenous pro oxidant therapies may constitute a new and effective melanoma treatment modality.


Asunto(s)
Complejo IV de Transporte de Electrones/antagonistas & inhibidores , Oxidantes/toxicidad , Gases em Plasma/química , Animales , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Complejo IV de Transporte de Electrones/metabolismo , Inhibidores Enzimáticos/farmacología , Humanos , Queratinocitos/efectos de los fármacos , Melanoma/patología , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Modelos Biológicos , ARN Interferente Pequeño/metabolismo
7.
Tumour Biol ; 37(8): 10753-61, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26873487

RESUMEN

TGF-ß1 and oxidative stress are involved in cancer progression, but in melanoma, their role is still controversial. Our aim was to correlate plasma TGF-ß1 levels and systemic oxidative stress biomarkers in patients with melanoma, with or without disease metastasis, to understand their participation in melanoma progression. Thirty patients were recruited for melanoma surveillance, together with 30 healthy volunteers. Patients were divided into two groups: Non-metastasis, comprising patients with tumor removal and no metastatic episode for 3 years; and Metastasis, comprising patients with a metastatic episode. The plasmatic cytokines TGF-ß1, IL-1 ß, and TNF-α were analyzed by ELISA. For oxidative stress, the following assays were performed: malondialdehyde (MDA), advanced oxidation protein products (AOPP) levels, total radical-trapping antioxidant parameter (TRAP) and thiol in plasma, and lipid peroxidation, SOD and catalase activity and GSH in erythrocytes. Patients with a metastatic episode had less circulating TGF-ß1 and increased TRAP, thiol, AOPP and lipid peroxidation levels. MDA was increased in both melanoma groups, while catalase, GSH, and IL-1ß was decreased in Non-metastasis patients. Significant negative correlations were observed between TGF-ß1 levels and systemic MDA, and TGF-ß1 levels and systemic AOPP, while a positive correlation was observed between TGF-ß1 levels and erythrocyte GSH. Lower levels of TGF-ß1 were related to increased oxidative stress in Metastasis patients, reinforcing new evidence that in melanoma TGF-ß1 acts as a tumor suppressor, inhibiting tumor relapse. These findings provide new knowledge concerning this cancer pathophysiology, extending the possibilities of investigating new therapies based on this evidence.


Asunto(s)
Melanoma/secundario , Proteínas de Neoplasias/sangre , Factor de Crecimiento Transformador beta1/sangre , Productos Avanzados de Oxidación de Proteínas/sangre , Antioxidantes/análisis , Biomarcadores , Catalasa/sangre , Citocinas/sangre , Progresión de la Enfermedad , Femenino , Disulfuro de Glutatión/sangre , Humanos , Peroxidación de Lípido , Masculino , Malondialdehído/sangre , Melanoma/sangre , Persona de Mediana Edad , Proteínas de Neoplasias/fisiología , Estrés Oxidativo , Compuestos de Sulfhidrilo/sangre , Superóxido Dismutasa/sangre , Factor de Crecimiento Transformador beta1/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...