Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(28): eadg1421, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38996019

RESUMEN

Genomic mechanisms enhancing risk in males may contribute to sex bias in autism. The ubiquitin protein ligase E3A gene (Ube3a) affects cellular homeostasis via control of protein turnover and by acting as transcriptional coactivator with steroid hormone receptors. Overdosage of Ube3a via duplication or triplication of chromosomal region 15q11-13 causes 1 to 2% of autistic cases. Here, we test the hypothesis that increased dosage of Ube3a may influence autism-relevant phenotypes in a sex-biased manner. We show that mice with extra copies of Ube3a exhibit sex-biasing effects on brain connectomics and autism-relevant behaviors. These effects are associated with transcriptional dysregulation of autism-associated genes, as well as genes differentially expressed in 15q duplication and in autistic people. Increased Ube3a dosage also affects expression of genes on the X chromosome, genes influenced by sex steroid hormone, and genes sex-differentially regulated by transcription factors. These results suggest that Ube3a overdosage can contribute to sex bias in neurodevelopmental conditions via influence on sex-differential mechanisms.


Asunto(s)
Trastorno Autístico , Transcriptoma , Ubiquitina-Proteína Ligasas , Animales , Masculino , Femenino , Trastorno Autístico/genética , Ratones , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Humanos , Conducta Animal , Caracteres Sexuales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Predisposición Genética a la Enfermedad
2.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38928178

RESUMEN

Physiology and behavior are structured temporally to anticipate daily cycles of light and dark, ensuring fitness and survival. Neuromodulatory systems in the brain-including those involving serotonin and dopamine-exhibit daily oscillations in neural activity and help shape circadian rhythms. Disrupted neuromodulation can cause circadian abnormalities that are thought to underlie several neuropsychiatric disorders, including bipolar mania and schizophrenia, for which a mechanistic understanding is still lacking. Here, we show that genetically depleting serotonin in Tph2 knockout mice promotes manic-like behaviors and disrupts daily oscillations of the dopamine biosynthetic enzyme tyrosine hydroxylase (TH) in midbrain dopaminergic nuclei. Specifically, while TH mRNA and protein levels in the Substantia Nigra (SN) and Ventral Tegmental Area (VTA) of wild-type mice doubled between the light and dark phase, TH levels were high throughout the day in Tph2 knockout mice, suggesting a hyperdopaminergic state. Analysis of TH expression in striatal terminal fields also showed blunted rhythms. Additionally, we found low abundance and blunted rhythmicity of the neuropeptide cholecystokinin (Cck) in the VTA of knockout mice, a neuropeptide whose downregulation has been implicated in manic-like states in both rodents and humans. Altogether, our results point to a previously unappreciated serotonergic control of circadian dopamine signaling and propose serotonergic dysfunction as an upstream mechanism underlying dopaminergic deregulation and ultimately maladaptive behaviors.


Asunto(s)
Ritmo Circadiano , Dopamina , Ratones Noqueados , Serotonina , Triptófano Hidroxilasa , Tirosina 3-Monooxigenasa , Área Tegmental Ventral , Animales , Serotonina/metabolismo , Ratones , Ritmo Circadiano/fisiología , Dopamina/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Tirosina 3-Monooxigenasa/genética , Triptófano Hidroxilasa/genética , Triptófano Hidroxilasa/metabolismo , Triptófano Hidroxilasa/deficiencia , Área Tegmental Ventral/metabolismo , Colecistoquinina/metabolismo , Colecistoquinina/genética , Neuronas Dopaminérgicas/metabolismo , Masculino , Sustancia Negra/metabolismo , Ratones Endogámicos C57BL , Trastorno Bipolar/metabolismo , Trastorno Bipolar/genética
3.
ACS Chem Neurosci ; 15(8): 1702-1711, 2024 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-38433715

RESUMEN

Serotonin-releasing fibers depart from the raphe nuclei to profusely innervate the entire central nervous system, displaying in some brain regions high structural plasticity in response to genetically induced abrogation of serotonin synthesis. Chronic fluoxetine treatment used as a tool to model peri-physiological, clinically relevant serotonin elevation is also able to cause structural rearrangements of the serotonergic fibers innervating the hippocampus. Whether this effect is limited to hippocampal-innervating fibers or extends to other populations of axons is not known. Here, we used confocal imaging and three-dimensional (3-D) modeling analysis to expand our morphological investigation of fluoxetine-mediated effects on serotonergic circuitry. We found that chronic treatment with a behaviorally active dose of fluoxetine affects the morphology and reduces the density of serotonergic axons innervating the medial prefrontal cortex, a brain region strongly implicated in the regulation of depressive- and anxiety-like behavior. Axons innervating the somatosensory cortex were unaffected, suggesting differential susceptibility to serotonin changes across cortical areas. Importantly, a 1-month washout period was sufficient to reverse morphological changes in both the medial prefrontal cortex and in the previously characterized hippocampus, as well as to normalize behavior, highlighting an intriguing relationship between axon density and an antidepressant-like effect. Overall, these results further demonstrate the bidirectional plasticity of defined serotonergic axons and provide additional insights into fluoxetine effects on the serotonergic system.


Asunto(s)
Fluoxetina , Serotonina , Fluoxetina/farmacología , Serotonina/farmacología , Antidepresivos/farmacología , Hipocampo , Encéfalo
4.
ACS Chem Neurosci ; 14(23): 4093-4104, 2023 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-37966717

RESUMEN

Serotonin is a neurotransmitter involved in the modulation of a multitude of physiological and behavioral processes. In spite of the relatively reduced number of serotonin-producing neurons present in the mammalian CNS, a complex long-range projection system provides profuse innervation to the whole brain. Heterogeneity of serotonin receptors, grouped in seven families, and their spatiotemporal expression pattern account for its widespread impact. Although neuronal communication occurs primarily at tiny gaps called synapses, wiring transmission, another mechanism based on extrasynaptic diffusion of neuroactive molecules and referred to as volume transmission, has been described. While wiring transmission is a rapid and specific one-to-one modality of communication, volume transmission is a broader and slower mode in which a single element can simultaneously act on several different targets in a one-to-many mode. Some experimental evidence regarding ultrastructural features, extrasynaptic localization of receptors and transporters, and serotonin-glia interactions collected over the past four decades supports the existence of a serotonergic system of a dual modality of neurotransmission, in which wiring and volume transmission coexist. To date, in spite of the radical difference in the two modalities, limited information is available on the way they are coordinated to mediate the specific activities in which serotonin participates. Understanding how wiring and volume transmission modalities contribute to serotonergic neurotransmission is of utmost relevance for the comprehension of serotonin functions in both physiological and pathological conditions.


Asunto(s)
Serotonina , Transmisión Sináptica , Humanos , Animales , Serotonina/metabolismo , Transmisión Sináptica/fisiología , Encéfalo/metabolismo , Neuronas/metabolismo , Receptores de Serotonina/metabolismo , Mamíferos/metabolismo
5.
Transl Psychiatry ; 12(1): 305, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35915065

RESUMEN

The D-aspartate oxidase (DDO) gene encodes the enzyme responsible for the catabolism of D-aspartate, an atypical amino acid enriched in the mammalian brain and acting as an endogenous NMDA receptor agonist. Considering the key role of NMDA receptors in neurodevelopmental disorders, recent findings suggest a link between D-aspartate dysmetabolism and schizophrenia. To clarify the role of D-aspartate on brain development and functioning, we used a mouse model with constitutive Ddo overexpression and D-aspartate depletion. In these mice, we found reduced number of BrdU-positive dorsal pallium neurons during corticogenesis, and decreased cortical and striatal gray matter volume at adulthood. Brain abnormalities were associated with social recognition memory deficit at juvenile phase, suggesting that early D-aspartate occurrence influences neurodevelopmental related phenotypes. We corroborated this hypothesis by reporting the first clinical case of a young patient with severe intellectual disability, thought disorders and autism spectrum disorder symptomatology, harboring a duplication of a chromosome 6 region, including the entire DDO gene.


Asunto(s)
Trastorno del Espectro Autista , Discapacidad Intelectual , Adulto , Animales , Ácido Aspártico/metabolismo , Trastorno del Espectro Autista/genética , D-Aspartato Oxidasa/química , D-Aspartato Oxidasa/genética , D-Aspartato Oxidasa/metabolismo , Ácido D-Aspártico/genética , Ácido D-Aspártico/metabolismo , Duplicación de Gen , Humanos , Discapacidad Intelectual/genética , Trastornos de la Memoria/genética , Ratones , Oxidorreductasas , Receptores de N-Metil-D-Aspartato/metabolismo
6.
Cells ; 11(12)2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35741068

RESUMEN

PCDH19 epilepsy (DEE9) is an X-linked syndrome associated with cognitive and behavioral disturbances. Since heterozygous females are affected, while mutant males are spared, it is likely that DEE9 pathogenesis is related to disturbed cell-to-cell communication associated with mosaicism. However, the effects of mosaic PCDH19 expression on cortical networks are unknown. We mimicked the pathology of DEE9 by introducing a patch of mosaic protein expression in one hemisphere of the cortex of conditional PCDH19 knockout mice one day after birth. In the contralateral area, PCDH19 expression was unaffected, thus providing an internal control. In this model, we characterized the physiology of the disrupted network using local field recordings and two photon Ca2+ imaging in urethane anesthetized mice. We found transient episodes of hyperexcitability in the form of brief hypersynchronous spikes or bursts of field potential oscillations in the 9-25 Hz range. Furthermore, we observed a strong disruption of slow wave activity, a crucial component of NREM sleep. This phenotype was present also when PCDH19 loss occurred in adult mice, demonstrating that PCDH19 exerts a function on cortical circuitry outside of early development. Our results indicate that a focal mosaic mutation of PCDH19 disrupts cortical networks and broaden our understanding of DEE9.


Asunto(s)
Excitabilidad Cortical , Epilepsia , Animales , Cadherinas/genética , Epilepsia/genética , Femenino , Masculino , Ratones , Mosaicismo , Protocadherinas
7.
Genes (Basel) ; 13(6)2022 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-35741731

RESUMEN

Athletic performance is influenced by many factors such as the environment, diet, training and endurance or speed in physical effort and by genetic predisposition. Just a few studies have analyzed the impact of genotypes on physical performance in rugby. The aim of this study was to verify the modulation of genetic influence on rugby-specific physical performance. Twenty-seven elite rugby union players were involved in the study during the in-season phase. Molecular genotyping was performed for: angiotensin-converting enzyme (ACE rs4646994), alfa-actinin-3 (ACTN3 rs1815739) and monocarboxylate transporter 1 (MCT1 rs1049434) and their variants. Lean mass index (from skinfolds), lower-limb explosive power (countermovement jump), agility (505), speed (20 m), maximal aerobic power (Yo-yo intermittent recovery test level 1) and repeated sprint ability (12 × 20 m) were evaluated. In our rugby union players ACE and ACTN3 variants did not show any influence on athletic performance. MCT1 analysis showed that TT-variant players had the highest peak vertical power (p = 0.037) while the ones with the AA genotype were the fastest in both agility and sprint tests (p = 0.006 and p = 0.012, respectively). Considering the T-dominant model, the AA genotype remains the fastest in both tests (agility: p = 0.013, speed: p = 0.017). Only the MCT1 rs1049434 A allele seems to be advantageous for elite rugby union players, particularly when power and speed are required.


Asunto(s)
Rendimiento Atlético , Fútbol Americano , Actinina/genética , Polimorfismo Genético , Rugby
8.
Genes (Basel) ; 13(6)2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35741757

RESUMEN

Several genes are involved in sport performance, especially in injuries incidence. The aim of this study was to investigate the association of ACE, ACTN3, COL1A1, and MCT1 genotypes and injuries in rugby players in order to find a genotype/phenotype correlation and provide useful information improving athletic performance. One-hundred male professional and semiprofessional rugby players were selected. Analysis was performed genotyping the genes ACE, ACTN3, COL1A1, and MCT1 as candidate gene of interest involved in athletic performance. A control group of non-athletic Italian male participants was analyzed to compare the results. We found statistical significance of MCT1 rs1049434 AA for total injuries (χ2 = 0.115; p = 0.003) and bone injuries (χ2 = 0.603; p = 0.007) in the rugby athlete population. No statistical significance was found between injury incidence and ACE, ACTN3, COL1A1 genotypes. The MCT1 AA genotype is associated with the incidence of total and bone injuries in the rugby player population. Although environmental factors such as lifestyle, diet, training, and stress can influence athletic performance, our data demonstrated the importance of genetic study in sport aimed at developing personalized training and achieving the best possible athletic excellence.


Asunto(s)
Traumatismos en Atletas , Rendimiento Atlético , Rugby , Actinina/genética , Atletas , Traumatismos en Atletas/epidemiología , Traumatismos en Atletas/genética , Proteínas de Ciclo Celular/genética , Cadena alfa 1 del Colágeno Tipo I/genética , Humanos , Masculino , Proteínas Oncogénicas/genética , Peptidil-Dipeptidasa A/genética , Rugby/lesiones
9.
Nat Commun ; 13(1): 2901, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35614045

RESUMEN

Adrenal glands are the major organs releasing catecholamines and regulating our stress response. The mechanisms balancing generation of adrenergic chromaffin cells and protecting against neuroblastoma tumors are still enigmatic. Here we revealed that serotonin (5HT) controls the numbers of chromaffin cells by acting upon their immediate progenitor "bridge" cells via 5-hydroxytryptamine receptor 3A (HTR3A), and the aggressive HTR3Ahigh human neuroblastoma cell lines reduce proliferation in response to HTR3A-specific agonists. In embryos (in vivo), the physiological increase of 5HT caused a prolongation of the cell cycle in "bridge" progenitors leading to a smaller chromaffin population and changing the balance of hormones and behavioral patterns in adulthood. These behavioral effects and smaller adrenals were mirrored in the progeny of pregnant female mice subjected to experimental stress, suggesting a maternal-fetal link that controls developmental adaptations. Finally, these results corresponded to a size-distribution of adrenals found in wild rodents with different coping strategies.


Asunto(s)
Células Cromafines , Neuroblastoma , Glándulas Suprarrenales/metabolismo , Animales , Catecolaminas/metabolismo , Células Cromafines/metabolismo , Femenino , Ratones , Neuroblastoma/metabolismo , Embarazo , Serotonina/metabolismo
10.
Nat Commun ; 13(1): 1056, 2022 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-35217677

RESUMEN

While shaped and constrained by axonal connections, fMRI-based functional connectivity reorganizes in response to varying interareal input or pathological perturbations. However, the causal contribution of regional brain activity to whole-brain fMRI network organization remains unclear. Here we combine neural manipulations, resting-state fMRI and in vivo electrophysiology to probe how inactivation of a cortical node causally affects brain-wide fMRI coupling in the mouse. We find that chronic inhibition of the medial prefrontal cortex (PFC) via overexpression of a potassium channel increases fMRI connectivity between the inhibited area and its direct thalamo-cortical targets. Acute chemogenetic inhibition of the PFC produces analogous patterns of fMRI overconnectivity. Using in vivo electrophysiology, we find that chemogenetic inhibition of the PFC enhances low frequency (0.1-4 Hz) oscillatory power via suppression of neural firing not phase-locked to slow rhythms, resulting in increased slow and δ band coherence between areas that exhibit fMRI overconnectivity. These results provide causal evidence that cortical inactivation can counterintuitively increase fMRI connectivity via enhanced, less-localized slow oscillatory processes.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Animales , Imagen por Resonancia Magnética/métodos , Ratones , Vías Nerviosas/fisiología , Corteza Prefrontal/diagnóstico por imagen
11.
Nat Commun ; 12(1): 6084, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34667149

RESUMEN

Postmortem studies have revealed increased density of excitatory synapses in the brains of individuals with autism spectrum disorder (ASD), with a putative link to aberrant mTOR-dependent synaptic pruning. ASD is also characterized by atypical macroscale functional connectivity as measured with resting-state fMRI (rsfMRI). These observations raise the question of whether excess of synapses causes aberrant functional connectivity in ASD. Using rsfMRI, electrophysiology and in silico modelling in Tsc2 haploinsufficient mice, we show that mTOR-dependent increased spine density is associated with ASD -like stereotypies and cortico-striatal hyperconnectivity. These deficits are completely rescued by pharmacological inhibition of mTOR. Notably, we further demonstrate that children with idiopathic ASD exhibit analogous cortical-striatal hyperconnectivity, and document that this connectivity fingerprint is enriched for ASD-dysregulated genes interacting with mTOR or Tsc2. Finally, we show that the identified transcriptomic signature is predominantly expressed in a subset of children with autism, thereby defining a segregable autism subtype. Our findings causally link mTOR-related synaptic pathology to large-scale network aberrations, revealing a unifying multi-scale framework that mechanistically reconciles developmental synaptopathy and functional hyperconnectivity in autism.


Asunto(s)
Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/fisiopatología , Sinapsis/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Adolescente , Animales , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/patología , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/fisiopatología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Corteza Cerebral/fisiopatología , Niño , Femenino , Haploinsuficiencia , Humanos , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Sinapsis/genética , Serina-Treonina Quinasas TOR/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/metabolismo
12.
Neurobiol Dis ; 158: 105448, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34280523

RESUMEN

INTRODUCTION: Plasticity at corticostriatal synapses is a key substrate for a variety of brain functions - including motor control, learning and reward processing - and is often disrupted in disease conditions. Despite intense research pointing toward a dynamic interplay between glutamate, dopamine (DA), and serotonin (5-HT) neurotransmission, their precise circuit and synaptic mechanisms regulating their role in striatal plasticity are still unclear. Here, we analyze the role of serotonergic raphe-striatal innervation in the regulation of DA-dependent corticostriatal plasticity. METHODS: Mice (males and females, 2-6 months of age) were housed in standard plexiglass cages at constant temperature (22 ± 1°C) and maintained on a 12/12h light/dark cycle with food and demineralized water ad libitum. In the present study, we used a knock-in mouse line in which the green fluorescent protein reporter gene (GFP) replaced the I Tph2 exon (Tph2GFP mice), allowing selective expression of GFP in the whole 5-HT system, highlighting both somata and neuritis of serotonergic neurons. Heterozygous, Tph2+/GFP, mice were intercrossed to obtain experimental cohorts, which included Wild-type (Tph2+/+), Heterozygous (Tph2+/GFP), and Mutant serotonin-depleted (Tph2GFP/GFP) animals. RESULTS: Using male and female mice, carrying on different Tph2 gene dosages, we show that Tph2 gene modulation results in sex-specific corticostriatal abnormalities, encompassing the abnormal amplitude of spontaneous glutamatergic transmission and the loss of Long Term Potentiation (LTP) in Tph2GFP/GFP mice of both sexes, while this form of plasticity is normally expressed in control mice (Tph2+/+). Once LTP is induced, only the Tph2+/GFP female mice present a loss of synaptic depotentiation. CONCLUSION: We showed a relevant role of the interaction between dopaminergic and serotonergic systems in controlling striatal synaptic plasticity. Overall, our data unveil that 5-HT plays a primary role in regulating DA-dependent corticostriatal plasticity in a sex-related manner and propose altered 5-HT levels as a critical determinant of disease-associated plasticity defects.


Asunto(s)
Neostriado/fisiología , Plasticidad Neuronal/fisiología , Serotonina/fisiología , Sinapsis/fisiología , Animales , Animales Modificados Genéticamente , Fenómenos Electrofisiológicos , Femenino , Ácido Glutámico/fisiología , Potenciación a Largo Plazo , Masculino , Ratones , Fibras Nerviosas , Enfermedad de Parkinson Secundaria/fisiopatología , Caracteres Sexuales , Transmisión Sináptica/fisiología , Triptófano Hidroxilasa/metabolismo
13.
Brain Sci ; 11(6)2021 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-34207086

RESUMEN

Amyotrophic lateral sclerosis (ALS) is characterized by the progressive degeneration of spinal motor neurons as well as corticospinal (CSN) large pyramidal neurons within cortex layer V. An intense microglia immune response has been associated with both upper and lower motor neuron degeneration in ALS patients, whereas microgliosis occurrence in the motor cortex of hSOD1G93A mice-the best characterized model of this disease-is not clear and remains under debate. Since the impact of microglia cells in the neuronal environment seems to be crucial for both the initiation and the progression of the disease, here we analyzed the motor cortex of hSOD1G93A mice at the onset of symptoms by the immunolabeling of Iba1/TMEM119 double positive cells and confocal microscopy. By means of Sholl analysis, we were able to identify and quantify the presence of presumably activated Iba1/TMEM119-positive microglia cells with shorter and thicker processes as compared to the normal surveilling and more ramified microglia present in WT cortices. We strongly believe that being able to analyze microglia activation in the motor cortex of hSOD1G93A mice is of great importance for defining the timing and the extent of microglia involvement in CSN degeneration and for the identification of the initiation stages of this disease.

14.
Int J Mol Sci ; 22(10)2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-34070217

RESUMEN

Rhes is one of the most interesting genes regulated by thyroid hormones that, through the inhibition of the striatal cAMP/PKA pathway, acts as a modulator of dopamine neurotransmission. Rhes mRNA is expressed at high levels in the dorsal striatum, with a medial-to-lateral expression gradient reflecting that of both dopamine D2 and adenosine A2A receptors. Rhes transcript is also present in the hippocampus, cerebral cortex, olfactory tubercle and bulb, substantia nigra pars compacta (SNc) and ventral tegmental area of the rodent brain. In line with Rhes-dependent regulation of dopaminergic transmission, data showed that lack of Rhes enhanced cocaine- and amphetamine-induced motor stimulation in mice. Previous studies showed that pharmacological depletion of dopamine significantly reduces Rhes mRNA levels in rodents, non-human primates and Parkinson's disease (PD) patients, suggesting a link between dopaminergic innervation and physiological Rhes mRNA expression. Rhes protein binds to and activates striatal mTORC1, and modulates L-DOPA-induced dyskinesia in PD rodent models. Finally, Rhes is involved in the survival of mouse midbrain dopaminergic neurons of SNc, thus pointing towards a Rhes-dependent modulation of autophagy and mitophagy processes, and encouraging further investigations about mechanisms underlying dysfunctions of the nigrostriatal system.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Proteínas de Unión al GTP/metabolismo , Enfermedad de Parkinson/metabolismo , Animales , Autofagia , Encéfalo/metabolismo , Encéfalo/patología , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas de Unión al GTP/deficiencia , Proteínas de Unión al GTP/genética , Regulación de la Expresión Génica , Humanos , Levodopa/metabolismo , Ratones , Ratones Noqueados , Mitofagia , Modelos Neurológicos , Degeneración Nerviosa/genética , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Trastornos Parkinsonianos/genética , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Transmisión Sináptica
15.
Biochim Biophys Acta Proteins Proteom ; 1868(12): 140531, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32853769

RESUMEN

BACKGROUND: Autism spectrum disorders (ASD) comprise a heterogeneous group of neurodevelopmental conditions characterized by impairment in social interaction, deviance in communication, and repetitive behaviors. Dysfunctional ionotropic NMDA and AMPA receptors, and metabotropic glutamate receptor 5 activity at excitatory synapses has been recently linked to multiple forms of ASD. Despite emerging evidence showing that d-aspartate and d-serine are important neuromodulators of glutamatergic transmission, no systematic investigation on the occurrence of these D-amino acids in preclinical ASD models has been carried out. METHODS: Through HPLC and qPCR analyses we investigated d-aspartate and d-serine metabolism in the brain and serum of four ASD mouse models. These include BTBR mice, an idiopathic model of ASD, and Cntnap2-/-, Shank3-/-, and 16p11.2+/- mice, three established genetic mouse lines recapitulating high confidence ASD-associated mutations. RESULTS: Biochemical and gene expression mapping in Cntnap2-/-, Shank3-/-, and 16p11.2+/- failed to find gross cerebral and serum alterations in d-aspartate and d-serine metabolism. Conversely, we found a striking and stereoselective increased d-aspartate content in the prefrontal cortex, hippocampus and serum of inbred BTBR mice. Consistent with biochemical assessments, in the same brain areas we also found a robust reduction in mRNA levels of d-aspartate oxidase, encoding the enzyme responsible for d-aspartate catabolism. CONCLUSIONS: Our results demonstrated the presence of disrupted d-aspartate metabolism in a widely used animal model of idiopathic ASD. GENERAL SIGNIFICANCE: Overall, this work calls for a deeper investigation of D-amino acids in the etiopathology of ASD and related developmental disorders.


Asunto(s)
Trastorno del Espectro Autista/metabolismo , Ácido D-Aspártico/metabolismo , Animales , Trastorno del Espectro Autista/etiología , Biomarcadores , Encéfalo/metabolismo , Cromatografía Líquida de Alta Presión , Ácido D-Aspártico/sangre , Modelos Animales de Enfermedad , Expresión Génica , Hipocampo/metabolismo , Ratones , Ratones Transgénicos , Corteza Prefrontal/metabolismo
16.
Sci Rep ; 9(1): 15294, 2019 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-31653935

RESUMEN

Previous evidence pointed out a role for the striatal-enriched protein Rhes in modulating dopaminergic transmission. Based on the knowledge that cocaine induces both addiction and motor stimulation, through its ability to enhance dopaminergic signaling in the corpus striatum, we have now explored the involvement of Rhes in the effects associated with this psychostimulant. Our behavioral data showed that a lack of Rhes in knockout animals caused profound alterations in motor stimulation following cocaine exposure, eliciting a significant leftward shift in the dose-response curve and triggering a dramatic hyperactivity. We also found that Rhes modulated either short- or long-term motor sensitization induced by cocaine, since lack of this protein prevents both of them in mutants. Consistent with this in vivo observation, we found that lack of Rhes in mice caused a greater increase in striatal cocaine-dependent D1R/cAMP/PKA signaling, along with considerable enhancement of Arc, zif268, and Homer1 mRNA expression. We also documented that lack of Rhes in mice produced cocaine-related striatal alterations in proteomic profiling, with a differential expression of proteins clustering in calcium homeostasis and cytoskeletal protein binding categories. Despite dramatic striatal alterations associated to cocaine exposure, our data did not reveal any significant changes in midbrain dopaminergic neurons as a lack of Rhes did not affect: (i) DAT activity; (ii) D2R-dependent regulation of GIRK; and (iii) D2R-dependent regulation of dopamine release. Collectively, our results strengthen the view that Rhes acts as a pivotal physiological "molecular brake" for striatal dopaminergic system overactivation induced by psychostimulants, thus making this protein of interest in regulating the molecular mechanism underpinning cocaine-dependent motor stimulatory effects.


Asunto(s)
Conducta Animal/efectos de los fármacos , Cocaína/farmacología , Proteínas de Unión al GTP/genética , Actividad Motora/efectos de los fármacos , Proteoma/metabolismo , Proteómica/métodos , Animales , Cuerpo Estriado/citología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Inhibidores de Captación de Dopamina/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Proteínas de Unión al GTP/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/genética , Proteoma/genética , Receptores de Dopamina D2/metabolismo , Transducción de Señal/efectos de los fármacos
17.
ACS Chem Neurosci ; 10(7): 3218-3224, 2019 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-31243951

RESUMEN

Serotonin (5-HT)-releasing fibers show substantial structural plasticity in response to genetically induced changes in 5-HT content. However, whether 5-HT fibers appear malleable also following clinically relevant variations in 5-HT levels that may occur throughout an individual's life has not been investigated. Here, using confocal imaging and 3D modeling analysis in Tph2GFP knock-in mice, we show that chronic administration of the antidepressant fluoxetine dramatically affects the morphology of 5-HT fibers innervating the dorsal and ventral hippocampus resulting in a reduced density of fibers. Importantly, GFP fluorescence levels appeared unaffected in the somata of both dorsal and median raphe 5-HT neurons, arguing against potential fluoxetine-mediated down-regulation of the Tph2 promoter driving GFP expression in the Tph2GFP mouse model. In keeping with this notion, mice bearing the pan-serotonergic driver Pet1-Cre partnered with a Cre-responsive tdTomato allele also showed similar morphological alterations in hippocampal 5-HT circuitry following chronic fluoxetine treatment. Moreover 5-HT fibers innervating the cortex showed proper density and no overt morphological disorganization, indicating that the reported fluoxetine-induced rearrangements were hippocampus specific. On the whole, these data suggest that 5-HT fibers are shaped in response to subtle changes of 5-HT homeostasis and may provide a structural basis by which antidepressants exert their therapeutic effect.


Asunto(s)
Fluoxetina/farmacología , Hipocampo/efectos de los fármacos , Fibras Nerviosas/efectos de los fármacos , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Neuronas Serotoninérgicas/efectos de los fármacos , Animales , Antidepresivos/farmacología , Conducta Animal/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Masculino , Ratones , Ratones Transgénicos , Neuronas/efectos de los fármacos , Natación
18.
J Neurosci ; 39(27): 5299-5310, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31061091

RESUMEN

Mutations in the synaptic scaffolding protein SHANK3 are a major cause of autism and are associated with prominent intellectual and language deficits. However, the neural mechanisms whereby SHANK3 deficiency affects higher-order socio-communicative functions remain unclear. Using high-resolution functional and structural MRI in adult male mice, here we show that loss of Shank3 (Shank3B-/-) results in disrupted local and long-range prefrontal and frontostriatal functional connectivity. We document that prefrontal hypoconnectivity is associated with reduced short-range cortical projections density, and reduced gray matter volume. Finally, we show that prefrontal disconnectivity is predictive of social communication deficits, as assessed with ultrasound vocalization recordings. Collectively, our results reveal a critical role of SHANK3 in the development of prefrontal anatomy and function, and suggest that SHANK3 deficiency may predispose to intellectual disability and socio-communicative impairments via dysregulation of higher-order cortical connectivity.SIGNIFICANCE STATEMENT Mutations in the synaptic scaffolding protein SHANK3 are commonly associated with autism, intellectual, and language deficits. Previous research has linked SHANK3 deficiency to basal ganglia dysfunction, motor stereotypies, and social deficits. However, the neural mechanism whereby Shank3 gene mutations affects cortical functional connectivity and higher-order socio-communicative functions remain unclear. Here we show that loss of SHANK3 in mice results in largely disrupted functional connectivity and abnormal gray matter anatomy in prefrontal areas. We also show that prefrontal connectivity disruption is tightly linked to socio-communicative deficits. Our findings suggest that SHANK3 is a critical orchestrator of frontocortical function, and that disrupted connectivity of prefrontal areas may underpin socio-communicative impairments observed in SHANK3 mutation carriers.


Asunto(s)
Trastorno del Espectro Autista/genética , Proteínas del Tejido Nervioso/fisiología , Corteza Prefrontal/crecimiento & desarrollo , Vocalización Animal/fisiología , Animales , Mapeo Encefálico , Modelos Animales de Enfermedad , Predisposición Genética a la Enfermedad , Sustancia Gris/crecimiento & desarrollo , Sustancia Gris/patología , Imagen por Resonancia Magnética , Masculino , Ratones Noqueados , Proteínas de Microfilamentos , Proteínas del Tejido Nervioso/genética , Corteza Prefrontal/patología , Conducta Social
19.
Biochimie ; 161: 3-14, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30513372

RESUMEN

Serotonin (5-hydroxytriptamine; 5-HT) is a fascinating neurotransmitter that thanks to an extensive axonal network is released throughout the entire central nervous system (CNS) and exerts its action on the modulation of a countless number of physiological, behavioral and cognitive processes. In addition, cumulating evidences have linked alteration in 5-HT neurotransmission with the onset of psychiatric and neurodevelopmental disorders, such as depression, autisms and schizophrenia. Nevertheless only 5% of the total body content of serotonin exerts its action in the CNS, while the rest is synthetized and stored in peripheral tissues where it acts as an autacoid. In 2003 it became evident that two distinct isoforms of tryptophan hydroxylase (Tph), the rate-limiting enzyme for the synthesis of serotonin, are selectively expressed in peripheral tissues and in the CNS, with Tph2 as the brain specific isoform. In the present review we describe how the discovery of Tph2 has improved our understanding on the role of serotonergic neurotransmission. We mainly focus on the analysis of animal models generated by genetic manipulation of Tph2, in which the synthesis of brain serotonin was either reduced or disrupted. The consequences of an altered serotonergic neurotransmission on brain development, as well as on physiological and behavioral processes will be assessed. Finally, we report on several association studies that have linked single nucleotide polymorphisms (SNPs) in the human TPH2 gene with behavioral disturbances and neuropsychiatric disorders.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Modelos Genéticos , Receptores de Serotonina/metabolismo , Serotonina/metabolismo , Transmisión Sináptica , Triptófano Hidroxilasa/metabolismo , Animales , Encéfalo/metabolismo , Humanos , Polimorfismo de Nucleótido Simple , Triptófano Hidroxilasa/genética
20.
EMBO Mol Med ; 11(1)2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30552094

RESUMEN

Dopamine D2 receptor signaling is central for striatal function and movement, while abnormal activity is associated with neurological disorders including the severe early-onset DYT1 dystonia. Nevertheless, the mechanisms that regulate D2 receptor signaling in health and disease remain poorly understood. Here, we identify a reduced D2 receptor binding, paralleled by an abrupt reduction in receptor protein level, in the striatum of juvenile Dyt1 mice. This occurs through increased lysosomal degradation, controlled by competition between ß-arrestin 2 and D2 receptor binding proteins. Accordingly, we found lower levels of striatal RGS9-2 and spinophilin. Further, we show that genetic depletion of RGS9-2 mimics the D2 receptor loss of DYT1 dystonia striatum, whereas RGS9-2 overexpression rescues both receptor levels and electrophysiological responses in Dyt1 striatal neurons. This work uncovers the molecular mechanism underlying D2 receptor downregulation in Dyt1 mice and in turn explains why dopaminergic drugs lack efficacy in DYT1 patients despite significant evidence for striatal D2 receptor dysfunction. Our data also open up novel avenues for disease-modifying therapeutics to this incurable neurological disorder.


Asunto(s)
Cuerpo Estriado/patología , Distonía Muscular Deformante/patología , Distonía Muscular Deformante/fisiopatología , Chaperonas Moleculares/genética , Proteínas RGS/análisis , Receptores de Dopamina D2/análisis , Transducción de Señal , Animales , Modelos Animales de Enfermedad , Expresión Génica , Técnicas de Silenciamiento del Gen , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/análisis , Proteínas del Tejido Nervioso/análisis , Proteínas RGS/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA