Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nature ; 423(6943): 1002-9, 2003 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-12827206

RESUMEN

Faithful transmission of the genome requires that a protein complex called cohesin establishes and maintains the regulated linkage between replicated chromosomes before their segregation. Here we report the unforeseen participation of Caenorhabditis elegans TIM-1, a paralogue of the Drosophila clock protein TIMELESS, in the regulation of chromosome cohesion. Our biochemical experiments defined the C. elegans cohesin complex and revealed its physical association with TIM-1. Functional relevance of the interaction was demonstrated by aberrant mitotic chromosome behaviour, embryonic lethality and defective meiotic chromosome cohesion caused by the disruption of either TIM-1 or cohesin. TIM-1 depletion prevented the assembly of non-SMC (structural maintenance of chromosome) cohesin subunits onto meiotic chromosomes; however, unexpectedly, a partial cohesin complex composed of SMC components still loaded. Further disruption of cohesin activity in meiosis by the simultaneous depletion of TIM-1 and an SMC subunit decreased homologous chromosome pairing before synapsis, revealing a new role for cohesin in metazoans. On the basis of comparisons between TIMELESS homologues in worms, flies and mice, we propose that chromosome cohesion, rather than circadian clock regulation, is the ancient and conserved function for TIMELESS-like proteins.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/genética , Cromosomas/fisiología , Animales , Proteínas de Caenorhabditis elegans/genética , Ritmo Circadiano , Drosophila , Proteínas de Drosophila/fisiología , Meiosis/fisiología , Mutación
2.
Mol Biol Cell ; 13(6): 1881-92, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12058056

RESUMEN

Formation of the bipolar mitotic spindle relies on a balance of forces acting on the spindle poles. The primary outward force is generated by the kinesin-related proteins of the BimC family that cross-link antiparallel interpolar microtubules and slide them past each other. Here, we provide evidence that Stu1p is also required for the production of this outward force in the yeast Saccharomyces cerevisiae. In the temperature-sensitive stu1-5 mutant, spindle pole separation is inhibited, and preanaphase spindles collapse, with their previously separated poles being drawn together. The temperature sensitivity of stu1-5 can be suppressed by doubling the dosage of Cin8p, a yeast BimC kinesin-related protein. Stu1p was observed to be a component of the mitotic spindle localizing to the midregion of anaphase spindles. It also binds to microtubules in vitro, and we have examined the nature of this interaction. We show that Stu1p interacts specifically with beta-tubulin and identify the domains required for this interaction on both Stu1p and beta-tubulin. Taken together, these findings suggest that Stu1p binds to interpolar microtubules of the mitotic spindle and plays an essential role in their ability to provide an outward force on the spindle poles.


Asunto(s)
Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Huso Acromático/ultraestructura , Tubulina (Proteína)/metabolismo , Secuencia de Bases , Cartilla de ADN , Genotipo , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Modelos Moleculares , Mutagénesis , Biosíntesis de Proteínas , Conformación Proteica , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Huso Acromático/fisiología , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA