RESUMEN
Extracellular vesicles (EVs) are involved in diverse cellular functions, playing a significant role in cell-to-cell communication in both physiological conditions and pathological scenarios. Therefore, EVs represent a promising therapeutic strategy. Oligodendrocytes (OLs) are myelinating glial cells developed from oligodendrocyte progenitor cells (OPCs) and damaged in chronic demyelinating diseases such as multiple sclerosis (MS). Glycoprotein transferrin (Tf) plays a critical role in iron homeostasis and has pro-differentiating effects on OLs in vivo and in vitro. In the current work, we evaluated the use of EVs as transporters of Tf to the central nervous system (CNS) through the intranasal (IN) route. For the in vitro mechanistic studies, we used rat plasma EVs. Our results show that EVTf enter OPCs through clathrin-caveolae and cholesterol-rich lipid raft endocytic pathways, releasing the cargo and exerting a pro-maturation effect on OPCs. These effects were also observed in vivo using the animal model of demyelination induced by cuprizone (CPZ). In this model, IN administered Tf-loaded EVs isolated from mouse plasma reached the brain parenchyma, internalizing into OPCs, promoting their differentiation, and accelerating remyelination. Furthermore, in vivo experiments demonstrated that EVs protected the Tf cargo and significantly reduced the amount of Tf required to induce remyelination as compared to soluble Tf. Collectively, these findings unveil EVs as functional nanocarriers of Tf to induce remyelination.
Asunto(s)
Enfermedades Desmielinizantes , Vesículas Extracelulares , Ratones , Ratas , Animales , Transferrina/metabolismo , Enfermedades Desmielinizantes/patología , Oligodendroglía/metabolismo , Encéfalo/metabolismo , Diferenciación Celular/fisiología , Cuprizona/toxicidad , Vesículas Extracelulares/metabolismo , Ratones Endogámicos C57BL , Vaina de Mielina/metabolismoRESUMEN
Although transferrin (Tf) is a glycoprotein best known for its role in iron delivery, iron-independent functions have also been reported. Here, we assessed apoTf (aTf) treatment effects on Neuro-2a (N2a) cells, a mouse neuroblastoma cell line which, once differentiated, shares many properties with neurons, including process outgrowth, expression of selective neuronal markers, and electrical activity. We first examined the binding of Tf to its receptor (TfR) in our model and verified that, like neurons, N2a cells can internalize Tf from the culture medium. Next, studies on neuronal developmental parameters showed that Tf increases N2a survival through a decrease in apoptosis. Additionally, Tf accelerated the morphological development of N2a cells by promoting neurite outgrowth. These pro-differentiating effects were also observed in primary cultures of mouse cortical neurons treated with aTf, as neurons matured at a higher rate than controls and showed a decrease in the expression of early neuronal markers. Further experiments in iron-enriched and iron-deficient media showed that Tf preserved its pro-differentiation properties in N2a cells, with results hinting at a modulatory role for iron. Moreover, N2a-microglia co-cultures revealed an increase in IL-10 upon aTf treatment, which may be thought to favor N2a differentiation. Taken together, these findings suggest that Tf reduces cell death and favors the neuronal differentiation process, thus making Tf a promising candidate to be used in regenerative strategies for neurodegenerative diseases.
Asunto(s)
Neuronas , Transferrina , Ratones , Animales , Transferrina/química , Transferrina/metabolismo , Neuronas/metabolismo , Hierro/metabolismo , Línea Celular , Diferenciación CelularRESUMEN
Multiple sclerosis (MS), especially in its progressive phase, involves early axonal and neuronal damage resulting from a combination of inflammatory mediators, demyelination, and loss of trophic support. During progressive disease stages, a microenvironment is created within the central nervous system (CNS) favoring the arrival and retention of inflammatory cells. Active demyelination and neurodegeneration have also been linked to microglia (MG) and astrocyte (AST)-activation in early lesions. While reactive MG can damage tissue, exacerbate deleterious effects, and contribute to neurodegeneration, it should be noted that activated MG possess neuroprotective functions as well, including debris phagocytosis and growth factor secretion. The progressive form of MS can be modeled by the prolonged administration to cuprizone (CPZ) in adult mice, as CPZ induces highly reproducible demyelination of different brain regions through oligodendrocyte (OLG) apoptosis, accompanied by MG and AST activation and axonal damage. Therefore, our goal was to evaluate the effects of a reduction in microglial activation through orally administered brain-penetrant colony-stimulating factor-1 receptor (CSF-1R) inhibitor BLZ945 (BLZ) on neurodegeneration and its correlation with demyelination, astroglial activation, and behavior in a chronic CPZ-induced demyelination model. Our results show that BLZ treatment successfully reduced the microglial population and myelin loss. However, no correlation was found between myelin preservation and neurodegeneration, as axonal degeneration was more prominent upon BLZ treatment. Concomitantly, BLZ failed to significantly offset CPZ-induced astroglial activation and behavioral alterations. These results should be taken into account when proposing the modulation of microglial activation in the design of therapies relevant for demyelinating diseases. Cover Image for this issue: https://doi.org/10.1111/jnc.15394.
Asunto(s)
Enfermedades Desmielinizantes , Esclerosis Múltiple , Animales , Factores Estimulantes de Colonias/efectos adversos , Factores Estimulantes de Colonias/metabolismo , Cuprizona/metabolismo , Cuprizona/toxicidad , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/tratamiento farmacológico , Enfermedades Desmielinizantes/metabolismo , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Esclerosis Múltiple/metabolismo , Vaina de Mielina/metabolismoRESUMEN
Previous work by our group has shown the pro-differentiating effects of apotransferrin (aTf) on oligodendroglial cells in vivo and in vitro. Further studies showed the remyelinating effect of aTf in animal demyelination models such as hypoxia/ischemia, where the intranasal administration of human aTf provided brain neuroprotection and reduced white matter damage, neuronal loss, and astrogliosis in different brain regions. These data led us to search for a less invasive and controlled technique to deliver aTf to the CNS. To such end, we isolated extracellular vesicles (EVs) from human and mouse plasma and different neuron and glia conditioned media and characterized them based on their quality, quantity, identity, and structural integrity by western blot, dynamic light scattering, and scanning electron microscopy. All sources yielded highly pure vesicles whose size and structures were in keeping with previous literary evidence. Given that, remarkably, EVs from all sources analyzed contained Tf receptor 1 (TfR1) in their composition, we employed two passive cargo-loading strategies which rendered successful EV loading with aTf, specifically through binding to TfR1. These results unveil EVs as potential nanovehicles of aTf to be delivered into the CNS parenchyma, and pave the way for further studies into their possible clinical application in the treatment of demyelinating diseases.
Asunto(s)
Apoproteínas/metabolismo , Vesículas Extracelulares/metabolismo , Nanopartículas/metabolismo , Receptores de Transferrina/metabolismo , Transferrina/metabolismo , Adulto , Animales , Apoproteínas/administración & dosificación , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Línea Celular Transformada , Línea Celular Tumoral , Células Cultivadas , Femenino , Humanos , Masculino , Ratones , Nanopartículas/administración & dosificación , Ratas , Ratas Wistar , Receptores de Transferrina/administración & dosificación , Transferrina/administración & dosificaciónRESUMEN
Developmental iron deficiency (dID) models facilitate the study of specific oligodendrocyte (OL) requirements for their progression to a mature state and subsequent contribution to myelination. In the current work, we used the dID model in transgenic mice expressing green fluorescence protein under the CNPase promoter allowing the identification of cells belonging to the oligodendroglial lineage, and the visualization of the entire myelin structure and single OL morphology. The present work evaluates dID effects on OL complexity in different brain areas. Control animals showed an increase in OL complexity both during development and along the anterior-posterior axis. In contrast, dID animals exhibited an initial increase in CNPase+ cells with prevalence of immature-OL (i-OL), an effect later compensated during development by selective death of those i-OL. As a consequence, developmental behavior was impaired in terms of body balance, muscle response, and sensorimotor functions. To explore why i-OL fail to mature in dID, expression levels of transcriptional factors involved in the maturation of the OL lineage were studied. In nuclear fractions, dID animals showed an increase in Hes5, which prevents the maturation of i-OL, and a decrease in Sox10, a positive regulator of OL maturation. The cytoplasmic fractions showed a decrease in Olig1, which is critical for precursor cell differentiation into premyelinating OL. Overall, the expression levels of Hes5, Sox10, and Olig1 in dID conditions correlated with an unfavorable OL maturation profile. In sum, the current results provide further evidence of dID impact on myelination, keeping OL away from the maturational path.
Asunto(s)
Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Deficiencias de Hierro , Trastornos del Metabolismo del Hierro/metabolismo , Oligodendroglía/metabolismo , Fenómenos Fisiologicos de la Nutrición Prenatal , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Trastornos del Metabolismo del Hierro/patología , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Oligodendroglía/patología , EmbarazoRESUMEN
Changes of neurosteroids may be involved in the pathophysiology of multiple sclerosis (MS). The present study investigated whether changes of neurosteroidogenesis also occurred in the grey and white matter regions of the brain in mice subjected to cuprizone-induced demyelination. Accordingly, we compared the expression of neurosteroidogenic proteins, including steroidogenic acute regulatory protein (StAR), voltage-dependent anion channel (VDAC) and 18 kDa translocator protein (TSPO), as well as neurosteroidogenic enzymes, including the side chain cleavage enzyme (P450scc), 3ß-hydroxysteroid dehydrogenase/isomerase and 5α-reductase (5α-R), during the demyelination and remyelination periods. Using immunohistochemistry and a quantitative polymerase chain reaction, we demonstrated a decreased expression of StAR, P450scc and 5α-R with respect to an increase astrocytic and microglial reaction and elevated levels of tumor necrosis factor (TNF)α during the cuprizone demyelination period in the hippocampus, cortex and corpus callosum. These parameters, as well as the glial reaction, were normalised after 2 weeks of spontaneous remyelination in regions containing grey matter. Conversely, persistent elevated levels of TNFα and low levels of StAR and P450scc were observed during remyelination in corpus callosum white matter. We conclude that neurosteroidogenesis/myelination status and glial reactivity are inversely related in the hippocampus and neocortex. Establishing a cause and effect relationship for the measured variables remains a future challenge for understanding the pathophysiology of MS.
Asunto(s)
Encéfalo/enzimología , Encéfalo/metabolismo , Vaina de Mielina/enzimología , Vaina de Mielina/metabolismo , Remielinización , 3-Hidroxiesteroide Deshidrogenasas/metabolismo , Animales , Encéfalo/efectos de los fármacos , Colestenona 5 alfa-Reductasa/metabolismo , Cuprizona/administración & dosificación , Sistema Enzimático del Citocromo P-450/metabolismo , Modelos Animales de Enfermedad , Femenino , Ratones Endogámicos C57BL , Esclerosis Múltiple/inducido químicamente , Esclerosis Múltiple/enzimología , Esclerosis Múltiple/metabolismo , Vaina de Mielina/efectos de los fármacos , Neuroglía/efectos de los fármacos , Neuroglía/enzimología , Neuroglía/metabolismo , Fosfoproteínas/metabolismo , Receptores de GABA/metabolismo , Remielinización/efectos de los fármacos , Canal Aniónico 1 Dependiente del Voltaje/metabolismoRESUMEN
It was recently described that Galectin-1 (Gal-1) promotes axonal growth after spinal cord injury. This effect depends on protein dimerization, since monomeric Gal-1 fails to stimulate axonal re-growth. Gal-1 is expressed in vivo at concentrations that favor the monomeric species. The aim of the present study is to investigate whether endogenous Gal-1 is required for spinal axon development and normal locomotor behavior in mice. In order to characterize axonal development, we used a novel combination of 3-DISCO technique with 1-photon microscopy and epifluorescence microscopy under high power LED illumination, followed by serial image section deconvolution and 3-D reconstruction. Cleared whole lgals-1-/- embryos were used to analyze the 3-D cytoarchitecture of motor, commissural, and sensory axons. This approach allowed us to evaluate axonal development, including the number of fibers, fluorescence density of the fiber tracts, fiber length as well as the morphology of axonal sprouting, deep within the tissue. Gal-1 deficient embryos did not show morphological/anatomical alterations in any of the axonal populations and parameters analyzed. In addition, specific guidance receptor PlexinA4 did not change its axonal localization in the absence of Gal-1. Finally, Gal-1 deficiency did not change normal locomotor activity in post-natal animals. Taken together, our results show that development of spinal axons as well as the locomotor abilities observed in adult mice are independent of Gal-1. Supporting our previous observations, the present study further validates the use of lgals-1-/- mice to develop spinal cord- or traumatic brain injury models for the evaluation of the regenerative action of Gal-1.
Asunto(s)
Axones/metabolismo , Benzamidas/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Locomoción/fisiología , Médula Espinal/citología , Médula Espinal/embriología , Tirosina/análogos & derivados , Animales , Axones/ultraestructura , Embrión de Mamíferos , Femenino , Ganglios Espinales/citología , Ganglios Espinales/embriología , Genotipo , Locomoción/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , Proteínas del Tejido Nervioso/metabolismo , Embarazo , Desempeño Psicomotor/fisiología , Prueba de Desempeño de Rotación con Aceleración Constante , Tirosina/genética , Tirosina/metabolismoRESUMEN
Galectin-1 (Gal-1), a member of a highly conserved family of animal lectins, binds to the common disaccharide [Galß(1-4)-GlcNAc] on both N- and O-glycans decorating cell surface glycoconjugates. Current evidence supports a role for Gal-1 in the pathophysiology of multiple sclerosis (MS), one of the most prevalent chronic inflammatory diseases. Previous studies showed that Gal-1 exerts neuroprotective effects by promoting microglial deactivation in a model of autoimmune neuroinflammation and induces axonal regeneration in spinal cord injury. Seeking a model that could link demyelination, oligodendrocyte (OLG) responses and microglial activation, here we used a lysolecithin (LPC)-induced demyelination model to evaluate the ability of Gal-1 to preserve myelin without taking part in T-cell modulation. Gal-1 treatment after LPC-induced demyelination promoted a significant decrease in the demyelinated area and fostered more efficient remyelination, concomitantly with an attenuated oligodendroglial progenitor response reflecting less severe myelination damage. These results were accompanied by a decrease in the area of microglial activation with a shift toward an M2-polarized microglial phenotype and diminished astroglial activation. In vitro studies further showed that, mechanistically, Gal-1 targets activated microglia, promoting an increase in their myelin phagocytic capacity and their shift toward an M2 phenotype, and leads to oligodendroglial differentiation. Therefore, this study supports the use of Gal-1 as a potential treatment for demyelinating diseases such as MS.
Asunto(s)
Diferenciación Celular/efectos de los fármacos , Enfermedades Desmielinizantes , Galectina 1/farmacología , Galectina 1/uso terapéutico , Microglía/efectos de los fármacos , Oligodendroglía/efectos de los fármacos , Fagocitosis/efectos de los fármacos , 2',3'-Nucleótido Cíclico 3'-Fosfodiesterasa/genética , 2',3'-Nucleótido Cíclico 3'-Fosfodiesterasa/metabolismo , Animales , Animales Recién Nacidos , Encéfalo/efectos de los fármacos , Encéfalo/ultraestructura , Polaridad Celular/efectos de los fármacos , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/tratamiento farmacológico , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Lisofosfatidilcolinas/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/ultraestructura , Proteínas del Tejido Nervioso/metabolismo , Oligodendroglía/ultraestructura , Técnicas de Cultivo de TejidosRESUMEN
UNLABELLED: Axonal growth cone collapse following spinal cord injury (SCI) is promoted by semaphorin3A (Sema3A) signaling via PlexinA4 surface receptor. This interaction triggers intracellular signaling events leading to increased hydrogen peroxide levels which in turn promote filamentous actin (F-actin) destabilization and subsequent inhibition of axonal re-growth. In the current study, we demonstrated that treatment with galectin-1 (Gal-1), in its dimeric form, promotes a decrease in hydrogen peroxide (H2O2) levels and F-actin repolimerization in the growth cone and in the filopodium of neuron surfaces. This effect was dependent on the carbohydrate recognition activity of Gal-1, as it was prevented using a Gal-1 mutant lacking carbohydrate-binding activity. Furthermore, Gal-1 promoted its own active ligand-mediated endocytosis together with the PlexinA4 receptor, through mechanisms involving complex branched N-glycans. In summary, our results suggest that Gal-1, mainly in its dimeric form, promotes re-activation of actin cytoskeleton dynamics via internalization of the PlexinA4/Gal-1 complex. This mechanism could explain, at least in part, critical events in axonal regeneration including the full axonal re-growth process, de novo formation of synapse clustering, axonal re-myelination and functional recovery of coordinated locomotor activities in an in vivo acute and chronic SCI model. SIGNIFICANCE STATEMENT: Axonal regeneration is a response of injured nerve cells critical for nerve repair in human spinal cord injury. Understanding the molecular mechanisms controlling nerve repair by Galectin-1, may be critical for therapeutic intervention. Our results show that Galectin-1; in its dimeric form, interferes with hydrogen peroxide production triggered by Semaphorin3A. The high levels of this reactive oxygen species (ROS) seem to be the main factor preventing axonal regeneration due to promotion of actin depolymerization at the axonal growth cone. Thus, Galectin-1 administration emerges as a novel therapeutic modality for promoting nerve repair and preventing axonal loss.
Asunto(s)
Actinas/metabolismo , Axones/fisiología , Endocitosis/fisiología , Galectina 1/metabolismo , Peróxido de Hidrógeno/metabolismo , Regeneración Nerviosa/fisiología , Neuronas/metabolismo , Animales , Axones/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Embrión de Mamíferos , Endocitosis/efectos de los fármacos , Galectina 1/genética , Galectina 1/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Hipocampo/citología , Ligandos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/genética , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Regeneración Nerviosa/efectos de los fármacos , Regeneración Nerviosa/genética , Neuronas/citología , Neuronas/efectos de los fármacos , Seudópodos/efectos de los fármacos , Seudópodos/fisiología , Ratas , Semaforina-3A/farmacología , Transducción de Señal , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patologíaRESUMEN
Considering the worldwide incidence of well characterized demyelinating disorders such as Multiple Sclerosis (MS) and the increasing number of pathologies recently found to involve hypomyelinating factors such as micronutrient deficits, elucidating the molecular basis of central nervous system (CNS) demyelination, remyelination and hypomyelination becomes essential to the development of future neuroregenerative therapies. In this context, this review discusses novel findings on the contribution of galectin-3 (Gal-3), transferrin (Tf) and iron to the processes of myelination and remyelination and their potentially positive regulation of oligodendroglial precursor cell (OPC) differentiation. Studies were conducted in cuprizone (CPZ)-induced demyelination and iron deficiency (ID)-induced hypomyelination, and the participation of glial and neural stem cells (NSC) in the remyelination process was evaluated by means of both in vivo and in vitro assays on primary cell cultures.
Asunto(s)
Galectina 3/metabolismo , Hierro/metabolismo , Vaina de Mielina/fisiología , Transferrina/metabolismo , Animales , Cuprizona/farmacología , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/fisiopatología , Humanos , Vaina de Mielina/efectos de los fármacosRESUMEN
Neural Stem and Progenitor Cells (NSC/NPC) are gathering tangible recognition for their uses in cell therapy and cell replacement therapies for human disease, as well as a model system to continue research on overall neural developmental processes in vitro. The Subventricular Zone is one of the largest NSC/NPC niches in the developing mammalian Central Nervous System, and persists through to adulthood. Oligodendrocyte progenitor cell (OPC) enriched cultures are usefull tools for in vitro studies as well as for cell replacement therapies for treating demyelination diseases. We used Subventricular Zone-derived NSC/NPC primary cultures from newborn mice and compared the effects of different growth factor combinations on cell proliferation and OPC yield. The Platelet Derived Growth Factor-AA and BB homodimers had a positive and significant impact on OPC generation. Furthermore, heparin addition to the culture media contributed to further increase overall culture yields. The OPC generated by this protocol were able to mature into Myelin Basic Protein-expressing cells and to interact with neurons in an in vitro co-culture system. As a whole, we describe an optimized in vitro method for increasing OPC.
Asunto(s)
Medios de Cultivo/farmacología , Ventrículos Laterales/efectos de los fármacos , Células-Madre Neurales/efectos de los fármacos , Neuronas/efectos de los fármacos , Oligodendroglía/efectos de los fármacos , Animales , Animales Recién Nacidos , Becaplermina , Biomarcadores/metabolismo , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Técnicas de Cocultivo , Medios de Cultivo/química , Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Heparina/farmacología , Humanos , Ventrículos Laterales/citología , Ventrículos Laterales/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteína Básica de Mielina/genética , Proteína Básica de Mielina/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuronas/citología , Neuronas/metabolismo , Oligodendroglía/citología , Oligodendroglía/metabolismo , Factor de Crecimiento Derivado de Plaquetas/farmacología , Cultivo Primario de Células , Proteínas Proto-Oncogénicas c-sis/farmacologíaRESUMEN
The principal motor tract involved in mammalian locomotor activities is known as the corticospinal tract (CST), which starts in the brain motor cortex (upper motor neuron), extends its axons across the brain to brainstem and finally reaches different regions of spinal cord, contacting the lower motor neurons. Visualization of the CST is essential to carry out studies in different kinds of pathologies such as spinal cord injury or multiple sclerosis. At present, most studies of axon structure and/or integrity that involve histological tissue sectioning present the problem of finding the region where the CST is predominant. To solve this problem, one could use a novel technique to make the tissues transparent and observe them directly without histological sectioning. However, the disadvantage of this procedure is the need of costly and nonconventional equipment, such as two-photon fluorescence microscopy or ultramicroscopy to perform the image acquisition. Here, we show that labeling the CST with FluoroRuby in the motor cortex and then performing the clearing technique, the z-acquisition of the entire CST in unsectioned tissue followed by three-dimensional reconstruction can be carried out by standard one-photon confocal microscopy, with yields similar to those obtained by two-photon microscopy. In addition, we present an example of the application of this method in a spinal cord injury model, where the disruption of CST is shown at the lesion site.
Asunto(s)
Axones/patología , Tractos Piramidales/patología , Traumatismos de la Médula Espinal/patología , Animales , Encéfalo/patología , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Corteza Motora/patología , Células Piramidales/patologíaRESUMEN
When spinal cord injury (SCI) occurs, a great number of inhibitors of axonal regeneration consecutively invade the injured site. The first protein to reach the lesion is known as semaphorin 3A (Sema3A), which serves as a powerful inhibitor of axonal regeneration. Mechanistically binding of Sem3A to the neuronal receptor complex neuropilin-1 (NRP-1) / PlexinA4 prevents axonal regeneration. In this special article we review the effects of galectin-1 (Gal-1), an endogenous glycan-binding protein, abundantly present at inflammation and injury sites. Notably, Gal1 adheres selectively to the NRP-1/PlexinA4 receptor complex in injured neurons through glycan-dependent mechanisms, interrupts the Sema3A pathway and contributes to axonal regeneration and locomotor recovery after SCI. While both the monomeric and dimeric forms of Gal-1 contribute to "switch-off" classically-activated microglia, only dimeric Gal-1 binds to the NRP-1/PlexinA4 receptor complex and promotes axonal regeneration. Thus, dimeric Gal-1 promotes functional recovery of spinal lesions by interfering with inhibitory signals triggered by Sema3A adhering to the NRP-1/PlexinA4 complex, supporting the use of dimeric Gal-1 for the treatment of SCI patients.
Asunto(s)
Axones/fisiología , Galectina 1/fisiología , Regeneración Nerviosa/fisiología , Traumatismos de la Médula Espinal/fisiopatología , Animales , Humanos , Ratones , Microglía/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuropilina-1/metabolismo , Receptores de Superficie Celular/metabolismo , Semaforina-3A/fisiologíaRESUMEN
Al producirse una lesión de médula espinal (LME), un sinnúmero de proteínas inhibidoras de la regeneración axonal ocupan el sitio de lesión en forma secuencial. La primer proteína en llegar al mismo se conoce como semaforina 3A (Sema3A), siendo además una de las más potentes por su acción de inhibir la regeneración axonal. A nivel mecanístico la unión de esta proteína al complejo-receptor neuronal neuropilin-1 (NRP-1)/PlexinA4 evita que se produzca regeneración axonal. En este trabajo de revisión se discutirá la acción de galectin-1 (Gal-1), una proteína endógena de unión a glicanos, que selectivamente se une al complejo-receptor NRP-1/PlexinA4 de las neuronas lesionadas a través de un mecanismo dependiente de interacciones lectina-glicano, interrumpiendo la señalización generada por Sema3A y permitiendo de esta manera la regeneración axonal y recuperación locomotora luego de producirse la LME. Mientras ambas formas de Gal-1 (monomérica y dimérica) contribuyen a la inactivación de la microglia, solo la forma dimérica de Gal-1 es capaz de unirse al complejo-receptor NRP-1/PlexinA4 y promover regeneración axonal. Por lo tanto, Gal-1 dimérica produce recuperación de las lesiones espinales interfiriendo en la señalización de Sema3A a través de la unión al complejo-receptor NRP-1/PlexinA4, sugiriendo el uso de esta lectina en su forma dimérica para el tratamiento de pacientes con LME.(AU)
When spinal cord injury (SCI) occurs, a great number of inhibitors of axonal regeneration consecutively invade the injured site. The first protein to reach the lesion is known as semaphorin 3A (Sema3A), which serves as a powerful inhibitor of axonal regeneration. Mechanistically binding of Sem3A to the neuronal receptor complex neuropilin-1 (NRP-1) / PlexinA4 prevents axonal regeneration. In this special article we review the effects of galectin-1 (Gal-1), an endogenous glycan-binding protein, abundantly present at inflammation and injury sites. Notably, Gal1 adheres selectively to the NRP-1/PlexinA4 receptor complex in injured neurons through glycan-dependent mechanisms, interrupts the Sema3A pathway and contributes to axonal regeneration and locomotor recovery after SCI. While both the monomeric and dimeric forms of Gal-1 contribute to ’switch-off’ classically-activated microglia, only dimeric Gal-1 binds to the NRP-1/PlexinA4 receptor complex and promotes axonal regeneration. Thus, dimeric Gal-1 promotes functional recovery of spinal lesions by interfering with inhibitory signals triggered by Sema3A adhering to the NRP-1/PlexinA4 complex, supporting the use of dimeric Gal-1 for the treatment of SCI patients.(AU)
RESUMEN
Al producirse una lesión de médula espinal (LME), un sinnúmero de proteínas inhibidoras de la regeneración axonal ocupan el sitio de lesión en forma secuencial. La primer proteína en llegar al mismo se conoce como semaforina 3A (Sema3A), siendo además una de las más potentes por su acción de inhibir la regeneración axonal. A nivel mecanístico la unión de esta proteína al complejo-receptor neuronal neuropilin-1 (NRP-1)/PlexinA4 evita que se produzca regeneración axonal. En este trabajo de revisión se discutirá la acción de galectin-1 (Gal-1), una proteína endógena de unión a glicanos, que selectivamente se une al complejo-receptor NRP-1/PlexinA4 de las neuronas lesionadas a través de un mecanismo dependiente de interacciones lectina-glicano, interrumpiendo la señalización generada por Sema3A y permitiendo de esta manera la regeneración axonal y recuperación locomotora luego de producirse la LME. Mientras ambas formas de Gal-1 (monomérica y dimérica) contribuyen a la inactivación de la microglia, solo la forma dimérica de Gal-1 es capaz de unirse al complejo-receptor NRP-1/PlexinA4 y promover regeneración axonal. Por lo tanto, Gal-1 dimérica produce recuperación de las lesiones espinales interfiriendo en la señalización de Sema3A a través de la unión al complejo-receptor NRP-1/PlexinA4, sugiriendo el uso de esta lectina en su forma dimérica para el tratamiento de pacientes con LME.
When spinal cord injury (SCI) occurs, a great number of inhibitors of axonal regeneration consecutively invade the injured site. The first protein to reach the lesion is known as semaphorin 3A (Sema3A), which serves as a powerful inhibitor of axonal regeneration. Mechanistically binding of Sem3A to the neuronal receptor complex neuropilin-1 (NRP-1) / PlexinA4 prevents axonal regeneration. In this special article we review the effects of galectin-1 (Gal-1), an endogenous glycan-binding protein, abundantly present at inflammation and injury sites. Notably, Gal1 adheres selectively to the NRP-1/PlexinA4 receptor complex in injured neurons through glycan-dependent mechanisms, interrupts the Sema3A pathway and contributes to axonal regeneration and locomotor recovery after SCI. While both the monomeric and dimeric forms of Gal-1 contribute to ’switch-off’ classically-activated microglia, only dimeric Gal-1 binds to the NRP-1/PlexinA4 receptor complex and promotes axonal regeneration. Thus, dimeric Gal-1 promotes functional recovery of spinal lesions by interfering with inhibitory signals triggered by Sema3A adhering to the NRP-1/PlexinA4 complex, supporting the use of dimeric Gal-1 for the treatment of SCI patients.
Asunto(s)
Animales , Humanos , Ratones , Axones/fisiología , Galectina 1/fisiología , Regeneración Nerviosa/fisiología , Traumatismos de la Médula Espinal/fisiopatología , Microglía/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuropilina-1/metabolismo , Receptores de Superficie Celular/metabolismo , /fisiologíaRESUMEN
When spinal cord injury (SCI) occurs, a great number of inhibitors of axonal regeneration consecutively invade the injured site. The first protein to reach the lesion is known as semaphorin 3A (Sema3A), which serves as a powerful inhibitor of axonal regeneration. Mechanistically binding of Sem3A to the neuronal receptor complex neuropilin-1 (NRP-1) / PlexinA4 prevents axonal regeneration. In this special article we review the effects of galectin-1 (Gal-1), an endogenous glycan-binding protein, abundantly present at inflammation and injury sites. Notably, Gal1 adheres selectively to the NRP-1/PlexinA4 receptor complex in injured neurons through glycan-dependent mechanisms, interrupts the Sema3A pathway and contributes to axonal regeneration and locomotor recovery after SCI. While both the monomeric and dimeric forms of Gal-1 contribute to "switch-off" classically-activated microglia, only dimeric Gal-1 binds to the NRP-1/PlexinA4 receptor complex and promotes axonal regeneration. Thus, dimeric Gal-1 promotes functional recovery of spinal lesions by interfering with inhibitory signals triggered by Sema3A adhering to the NRP-1/PlexinA4 complex, supporting the use of dimeric Gal-1 for the treatment of SCI patients.
RESUMEN
Our previous studies showed that the intracerebral injection of apotransferrin (aTf) attenuates white matter damage and accelerates the remyelination process in a neonatal rat model of cerebral hypoxia-ischemia (HI) injury. However, the intracerebral injection of aTf might not be practical for clinical treatments. Therefore, the development of less invasive techniques capable of delivering aTf to the central nervous system would clearly aid in its effective clinical use. In this work, we have determined whether intranasal (iN) administration of human aTf provides neuroprotection to the neonatal mouse brain following a cerebral hypoxic-ischemic event. Apotransferrin was infused into the naris of neonatal mice and the HI insult was induced by right common carotid artery ligation followed by exposure to low oxygen concentration. Our results showed that aTf was successfully delivered into the neonatal HI brain and detected in the olfactory bulb, forebrain and posterior brain 30 min after inhalation. This treatment successfully reduced white matter damage, neuronal loss and astrogliosis in different brain regions and enhanced the proliferation and survival of oligodendroglial progenitor cells (OPCs) in the subventricular zone and corpus callosum (CC). Additionally, using an in vitro hypoxic model, we demonstrated that aTf prevents oligodendrocyte progenitor cell death by promoting their differentiation. In summary, these data suggest that iN administration of aTf has the potential to be used for clinical treatment to protect myelin and to induce remyelination in demyelinating hypoxic-ischemic events in the neonatal brain.
Asunto(s)
Apoproteínas/administración & dosificación , Lesiones Encefálicas/prevención & control , Hipoxia-Isquemia Encefálica/patología , Fibras Nerviosas Mielínicas/efectos de los fármacos , Fármacos Neuroprotectores/administración & dosificación , Transferrina/administración & dosificación , 2',3'-Nucleótido Cíclico 3'-Fosfodiesterasa/genética , Administración Intranasal , Factores de Edad , Animales , Animales Recién Nacidos , Antígenos/metabolismo , Proteínas Relacionadas con la Autofagia , Lesiones Encefálicas/etiología , Bromodesoxiuridina/metabolismo , Caspasa 3/metabolismo , Muerte Celular/efectos de los fármacos , Muerte Celular/genética , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Corteza Cerebral/citología , Colchicina/farmacología , Cuerpo Calloso/efectos de los fármacos , Cuerpo Calloso/patología , Citocalasina B/farmacología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Humanos , Hipoxia/tratamiento farmacológico , Hipoxia-Isquemia Encefálica/complicaciones , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Proteínas de Filamentos Intermediarios/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ventrículos Laterales/efectos de los fármacos , Ventrículos Laterales/fisiología , Masculino , Ratones , Ratones Transgénicos , Proteína Básica de Mielina/metabolismo , Fibras Nerviosas Mielínicas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Nestina , Neurogénesis/efectos de los fármacos , Oligodendroglía/efectos de los fármacos , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Proteoglicanos/metabolismo , Factores de Transcripción SOXB1/metabolismo , Factores de TiempoRESUMEN
We have previously demonstrated that aTf (apotransferrin) accelerates maturation of OLs (oligodendrocytes) in vitro as well as in vivo. The purpose of this study is to determine whether aTf plays a functional role in a model of H/I (hypoxia/ischaemia) in the neonatal brain. Twenty-four hours after H/I insult, neonatal rats were intracranially injected with aTf and the effects of this treatment were evaluated in the CC (corpus callosum) as well as the SVZ (subventricular zone) at different time points. Similar to previous studies, the H/I event produced severe demyelination in the CC. Demyelination was accompanied by microglial activation, astrogliosis and iron deposition. Ferritin levels increased together with lipid peroxidation and apoptotic cell death. Histological examination after the H/I event in brain tissue of aTf-treated animals (H/I aTF) revealed a great number of mature OLs repopulating the CC compared with saline-treated animals (H/I S). ApoTf treatment induced a gradual increase in MBP (myelin basic protein) and myelin lipid staining in the CC reaching normal levels after 15 days. Furthermore, significant increase in the number of OPCs (oligodendroglial progenitor cells) was found in the SVZ of aTf-treated brains compared with H/I S. Specifically, there was a rise in cells positive for OPC markers, i.e. PDGFRα and SHH(+) cells, with a decrease in cleaved-caspase-3(+) cells compared with H/I S. Additionally, neurospheres from aTf-treated rats were bigger in size and produced more O4/MBP(+) cells. Our findings indicate a role for aTf as a potential inducer of OLs in neonatal rat brain in acute demyelination caused by H/I and a contribution to the differentiation/maturation of OLs and survival/migration of SVZ progenitors after demyelination in vivo.
Asunto(s)
Apoproteínas/fisiología , Hipoxia-Isquemia Encefálica/patología , Hipoxia-Isquemia Encefálica/prevención & control , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Recuperación de la Función/fisiología , Transferrina/fisiología , Animales , Animales Recién Nacidos , Apoproteínas/uso terapéutico , Células Cultivadas , Cuerpo Calloso/patología , Cuerpo Calloso/fisiología , Femenino , Humanos , Hipoxia-Isquemia Encefálica/fisiopatología , Masculino , Vaina de Mielina/fisiología , Células-Madre Neurales/patología , Células-Madre Neurales/fisiología , Oligodendroglía/patología , Oligodendroglía/fisiología , Ratas , Ratas Wistar , Transferrina/uso terapéuticoRESUMEN
In the central nervous system, transferrin (Tf) is produced by oligodendroglial cells (OLGcs) and is essential for their development. Recently, using the complete cDNA of the human Tf gene, we obtained clones overexpressing Tf in two OLGc lines, N19 and N20.1, which represent different stages of differentiation. We showed that the overexpression of this glycoprotein promotes the maturation and myelinogenic capacity of both cell lines. In this work, using cDNA array technology, we examined changes induced by Tf in 1,176 genes. We found 41 genes differentially expressed in both cell lines, all of them involved in OLGc development. In the less mature cells (N19) overexpressing Tf, there was a significant increase in key enzymes of neurosteroid metabolism, such as cholesterol side chain cleavage cytochrome P450, 3beta-hydroxysteroid dehydrogenase and 5alpha-reductase type 1. In the more mature cell line (N20.1), Tf overexpression produced an induction of several mRNAs of the GABA(A) receptor subunits, of thyroid hormone receptors and of proteins involved in axon-glia interactions such as F3/contactin. In addition, in both cell lines, Tf overexpression induced an increase in the expression of different isoforms of transforming growth factor beta receptors and in several genes related to mitochondrial function and to complex lipid metabolism, crucial steps in myelin synthesis. Differentiation produced by Tf in both cell lines seems to occur by modulation of different genes depending on the maturational stage of the cells. Our findings provide new insights into the molecular basis of OLGc differentiation and on the role played by Tf in this process.
Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Oligodendroglía/metabolismo , Transferrina/fisiología , 3-Hidroxiesteroide Deshidrogenasas/genética , Animales , Diferenciación Celular/fisiología , Línea Celular , Senescencia Celular/genética , Colestenona 5 alfa-Reductasa/genética , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/genética , Humanos , Isoenzimas/genética , Metabolismo de los Lípidos , Proteínas Mitocondriales/genética , Vaina de Mielina/fisiología , Oligodendroglía/citología , Oligodendroglía/enzimología , Oligodendroglía/fisiología , Análisis de Secuencia por Matrices de Oligonucleótidos , Esteroides/metabolismo , Transferrina/genéticaRESUMEN
We have shown that apotransferrin (aTf) promotes the differentiation of two oligodendroglial cell (OLGc) lines, N19 and N20.1, representing different stages of OLGc maturation. Although in both cell lines aTf promoted myelin basic protein (MBP) expression, an increase in cAMP levels and CREB phosphorylation was observed only in the less mature cells (N19), suggesting that the maturation induced by aTf is achieved probably through different signaling pathways. We transfected both cell lines with the proximal region of the human MBP promoter fused to the lacZ reporter gene. In both transfected cell lines, addition of aTf produced an activation of the promoter. To elucidate the mechanisms involved in this action, Western blot analysis, EMSAs, and RT-PCR were performed for different transcription factors involved in mbp regulation. In the N20.1 line, treatment with aTf increased the expression and the DNA-binding capacity of thyroid hormone (TH) receptors, Sp1, and nuclear factor-kappaB (NFkappaB). For these cells we found that an inductor of NFkappaB (tumor necrosis factor-alpha) promoted MBP messenger synthesis, whereas mithramycin, a specific inibitor of Sp1, and a cAMP analog (db-cAMP) inhibited its transcription. In the N19 cell line, aTf stimulated NF-I and NFkappaB activation, but, aside from aTf, only db-cAMP induced mbp transcription. These data suggest that, depending on the OLGc maturational stage, aTf modulates MBP expression and OLGc differentiation through different signaling pathways and different transcription factors.