Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 47(34): 11903-11908, 2018 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-29942938

RESUMEN

The mechanism of oxygen activation at a dicobalt bis-µ-hydroxo core is probed by the implementation of synthetic methods to isolate reaction intermediates. Reduction of a dicobalt(iii,iii) core ligated by the polypyridyl ligand dipyridylethane naphthyridine (DPEN) by two electrons and subsequent protonation result in the release of one water moiety to furnish a dicobalt(ii,ii) center with an open binding site. This reduced core may be independently isolated by chemical reduction. Variable-temperature 1H NMR and SQUID magnetometry reveal the reduced dicobalt(ii,ii) intermediate to consist of two low spin Co(ii) centers coupled antiferromagnetically. Binding of O2 to the open coordination site of the dicobalt(ii,ii) core results in the production of an oxygen adduct, which is proposed to be a dicobalt(iii,iii) peroxo. Electrochemical studies show that the addition of two electrons results in cleavage of the O-O bond.

2.
J Am Chem Soc ; 138(9): 2925-8, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26876226

RESUMEN

The selective four electron, four proton, electrochemical reduction of O2 to H2O in the presence of a strong acid (TFA) is catalyzed at a dicobalt center. The faradaic efficiency of the oxygen reduction reaction (ORR) is furnished from a systematic electrochemical study by using rotating ring disk electrode (RRDE) methods over a wide potential range. We derive a thermodynamic cycle that gives access to the standard potential of O2 reduction to H2O in organic solvents, taking into account the presence of an exogenous proton donor. The difference in ORR selectivity for H2O vs H2O2 depends on the thermodynamic standard potential as dictated by the pKa of the proton donor. The model is general and rationalizes the faradaic efficiencies reported for many ORR catalytic systems.

3.
J Am Chem Soc ; 137(16): 5461-7, 2015 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-25757058

RESUMEN

In relation to contemporary energy challenges, a number of molecular catalysts for the activation of small molecules, mainly based on transition metal complexes, have been developed. The time has thus come to develop tools allowing the benchmarking of these numerous catalysts. Two main factors of merit are addressed. One involves their intrinsic catalytic performances through the comparison of "catalytic Tafel plots" relating the turnover frequency to the overpotential independently of the characteristics of the electrochemical cell. The other examines the effect of deactivation of the catalyst during the course of electrolysis. It introduces the notion of the limiting turnover number as a second key element of catalyst benchmarking. How these two factors combine with one another to control the course of electrolysis is analyzed in detail, leading to procedures that allow their separate estimation from measurements of the current, the charge passed, and the decay of the catalyst concentration. Illustrative examples from literature data are discussed.

4.
Proc Natl Acad Sci U S A ; 111(42): 14990-4, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25288744

RESUMEN

A very efficient electrogenerated Fe(0) porphyrin catalyst was obtained by substituting in tetraphenylporphyrin two of the opposite phenyl rings by ortho-, ortho'-phenol groups while the other two are perfluorinated. It proves to be an excellent catalyst of the CO2-to-CO conversion as to selectivity (the CO faradaic yield is nearly quantitative), overpotential, and turnover frequency. Benchmarking with other catalysts, through catalytic Tafel plots, shows that it is the most efficient, to the best of our knowledge, homogeneous molecular catalyst of the CO2-to-CO conversion at present. Comparison with another Fe(0) tetraphenylporphyrin bearing eight ortho-, ortho'-phenol functionalities launches a general strategy where changes in substituents will be designed so as to optimize the operational combination of all catalyst elements of merit.

5.
J Am Chem Soc ; 136(33): 11821-9, 2014 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-25078392

RESUMEN

Two derivatives of iron tetraphenylporphyrin bearing prepositioned phenolic functionalities on two of the opposed phenyl groups prove to be remarkable catalysts for the reduction of CO2 to CO when generated electrochemically at the Fe(0) oxidation state. In one case, the same substituents are present on the two other phenyls, whereas in the other the two other phenyls are perfluorinated. They are taken as examples of the possible role of pendant acid-base groups in molecular catalysis. The prepositioned phenol groups incorporated into the catalyst molecule induce strong stabilization of the initial Fe(0)CO2 adduct through H-bonding, confirmed by DFT calculations. This positive factor is partly counterbalanced by the necessity, resulting from the same stabilization, to inject an additional electron to trigger catalysis. Thanks to the preprotonation of the initial Fe(0)CO2 adduct, the potential required for this second electron transfer is not very distant from the potential at which the adduct is generated by addition of CO2 to the Fe(0) complex. The protonation step involves an internal phenolic group and the reprotonation of the phenoxide ion thus generated by added phenol. The prepositioned phenol groups thus play both the role of H-bonding stabilizers and high-concentration proton donors. They play the same role in the second electron transfer step which closes the catalytic loop concertedly with the breaking of one of the two C-O bonds of CO2 and with proton transfer. It is also remarkable that reprotonation by added phenol is concerted with the three other events.

6.
J Am Chem Soc ; 135(24): 9023-31, 2013 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-23692448

RESUMEN

Most of the electrocatalytic processes of interest in the resolution of modern energy challenges are associated with proton transfer. In the cases where heavy atom bond cleavage occurs concomitantly, the question arises of the exact nature of its coupling with proton-electron transfer within the catalytic cycle. The cleavage of a C-O bond in the catalyzed electrochemical conversion of CO2 to CO offers the opportunity to address this question. Electrochemically generated iron(0) porphyrins are efficient, specific, and durable catalysts provided they are coupled with Lewis or Brönsted acids. The cocatalyst properties of four Brönsted acids of increasing strength, water, trifluoroethanol, phenol, and acetic acid, have been systematically investigated. Preparative-scale electrolyses showed that carbon monoxide is the only product of the catalytic reaction. Methodic application of a nondestructive technique, cyclic voltammetry, with catalyst and CO2 concentrations, as well as H/D isotope effect, as diagnostic parameters allowed the dissection of the reaction mechanism. It appears that the key step of the reaction sequence consists of an electron transfer from the catalyst concerted with the cleavage of a C-O bond and the transfer of one proton. This is the second example, and an intermolecular version of such a concerted proton-electron bond-breaking reaction after a similar electrochemical process involving the cleavage of O-O bonds has been identified. It is the first time that a proton-electron transfer concerted with bond breaking has been uncovered as the crucial step in a catalytic multistep reaction.

7.
Chemistry ; 18(42): 13473-9, 2012 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-22968711

RESUMEN

The substituted iron-thiolate complex [Fe(2)(µ-bdt)(CO)(4){P(OMe)(3)}(2)] (bdt=benzenedithiolate) is an active catalyst for electrochemical hydrogen production in aqueous sodium dodecyl sulfate solution, with a high apparent rate constant of 4×10(6) M(-1) s(-1). The half-peak potential for catalysis of proton reduction is less negative than -0.6 V versus the standard hydrogen electrode at pH 3. Voltammetric data are consistent with the rate of electrode reaction controlled by diffusion. A mechanism that begins with the rapid protonation of the iron-thiolate catalyst is proposed. The Faradaic efficiency in diluted HCl solutions is close to 100%, but the catalytic activity decayed after about twelve turnovers when electrolysis was carried out in the presence of acetic acid.

8.
Phys Chem Chem Phys ; 2012 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-22278091

RESUMEN

The diiron hydrogenase model Fe(2)(bdt)(CO)(6) (1, bdt = benzenedithiolate) was dispersed in aqueous micellar solution prepared from sodium dodecyl sulfate (SDS). Aqueous solution of 1 showed no sign of decomposition when left in contact with air over a period of several days. Current-potential responses recorded at a dropping mercury electrode over pH 7-3 were consistent with reduction of freely diffusing species. Catalysis of proton reduction was observed at pH < 6 with current densities exceeding 0.5 mA cm(-2) at an acid-to-catalyst ratio of 17. Bulk electrolysis at -0.66 V vs. SHE of solution of 1 at pH 3 confirmed the production of hydrogen with a Faradaic efficiency close to 100%. A mechanism involving initial reduction of 1 and subsequent proton-coupled electron transfer is proposed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...